Week 16 - Worksheet - MTH 305 (Spring 2017)

(1) The rate of absorption of two drugs, in milligrams per hour, in the first 5 hours after injection is shown in the figure below.

Drug A Drug B
(a) After 2 hours, which drug has been absorbed the most? At the end of 5 hours? How did you arrive at your answer? area undo curre/count gid squalls.
(b) How much of Drug B has been absorbed after 4 hours? Include units. Round your answer to the nearest integer. How did you arrive at your answer? area under $r_{2}(t) \approx 8.25$ grid squaws

4 mg of Drug B absorbed \quad each grid square $=0.5 \mathrm{mg}$
(2) The amount of oil spilling out of a defective offshore oil rig, V, in tons per hour, is approximated by $V=5.2 e^{-0.032 t}$, where t is hours since the initial breakdown of the oil rig.
(a) If it takes 4 days for the rig to be fixed, find the total volume of oil spilt. Round your answer to the nearest integer. $\int_{0}^{96} v(t) d t=155$ tons
(b) If environmental cleanup costs are $\$ 5,600$ per ton, how much does it cost the company to clean up the oil spill? $\quad 155 \times \$ 5600=\$ 868,000$
(3) Find the volume of the solid obtained by rotating about the axis the region under the curve $y=2 \sqrt{x}$ from 0 to 1 . Illustrate the definition of volume by sketching a typical approximating cylinder.
(4) In the exercises below, compute the definite integral $\int_{a}^{b} f(x) d x$.
(a) $f(x)=\frac{x^{2}-1}{x+1}, a=3, b=5$
(b) $f(x)=x^{3}\left(\frac{1}{x}+2 \sqrt{x}-1\right), a=1, b=2$
(sse pp. 2)
(c) $f(x)=3\left(e^{x}-1\right), a=0, b=1$
(5) In the exercises below, compute the given integral. Use differentiation to justify your answers.
(a) $\int \sqrt[4]{x-5} d x$
(b) $\int(x+3)\left(x^{2}+6 x-1\right)^{5 / 7} d x$
(c) $\int_{-1}^{1} x \sqrt{x^{2}-1}\left(x^{2}-1\right) d x$$\quad$ (see pp. 3)
(6) Given $\int_{1}^{2} f(x) d x=4, \int_{2}^{3} f(x) d x=2, \int_{1}^{2} g(x) d x=-1$ and $\int_{2}^{3} g(x) d x=1$, evaluate
(a) $\int_{1}^{3} f(x) d x=6$
(b) $\int_{3}^{1} g(x) d x=0$
(c) $\int_{1}^{3}[2 f(x)-5 g(x)] d x=12$
\#4) (a)

$$
\begin{aligned}
\int_{3}^{5} \frac{x^{2}-1}{x+1} d x=\int_{3}^{5} \frac{(x+1)(x-1)}{(x+1)} d x & =\int_{3}^{5}(x-1) d x \\
& =\left.\frac{x^{2}}{2}\right|_{3} ^{5}-\left.x\right|_{3} ^{5}=\frac{1}{2}(25-9)-(5-3) \\
& =8-2=6
\end{aligned}
$$

(b)

$$
\begin{aligned}
\int_{1}^{2} x^{3}\left(\frac{1}{x}+2 \sqrt{x}-1\right) d x & =\int_{1}^{2}\left(x^{2}+2 x^{7 / 2}-x^{3}\right) d x \\
& =\int_{1}^{2} x^{2} d x+2 \int_{1}^{2} x^{7 / 2} d x-\int_{1}^{2} x^{3} d x \\
& =\left.\frac{x^{3}}{3}\right|_{1} ^{2}+2\left(\left.\frac{x^{9 / 2}}{9 / 2}\right|_{1} ^{2}\right)-\left(\left.\frac{x^{4}}{4}\right|_{1} ^{2}\right) \\
& =\frac{1}{3}(8-1)+\frac{4}{9}\left(2^{9 / 2}-1\right)-\frac{1}{4}(16-1) \\
& =\frac{7}{3}+\frac{64 \sqrt{2}}{9}-\frac{4}{9}-\frac{15}{4}=\frac{84+256 \sqrt{2}-16-135}{36} \\
& =\frac{256 \sqrt{2}-67}{36}
\end{aligned}
$$

(c)

$$
\begin{aligned}
\int_{0}^{1} 3\left(e^{x}-1\right) d x=3 \int_{0}^{1} e^{x} d x-3 \int_{0}^{1} d x & =3\left(\left.e^{x}\right|_{0} ^{1}\right)-3\left(\left.x\right|_{0} ^{1}\right) \\
& =3(e-1)-3(1-0) \\
& =3 e-6
\end{aligned}
$$

(\#) (a) $\int \sqrt[4]{x-5} d x$
Let $u(x)=x-5$. Then $\frac{d u}{d x}=1$, or, $d u=d x$

$$
\int \sqrt[4]{x-5} d x=\int \sqrt[7]{u} d u=\int u^{1 / 4} d u=\frac{45 / 4}{\frac{5}{4}}+c=\frac{4}{5}(x-5)^{\frac{5}{4}}+c
$$

(b) $\int(x+3)\left(x^{2}+6 x-1\right)^{5 / 7} d x$

Let $u(x)=x^{2}+6 x-1$. Then $\frac{d u}{d x}=2 x+6=2(x+3)$. Then $(x+3) d x=\frac{1}{2} d u$.

$$
\int(x+3)\left(x^{2}+6 x-1\right)^{5 / 7} d x=\frac{1}{2} \int u^{5 / 7} d u=\frac{1}{2} \frac{u^{12 / 7}}{12 / 7}+c=\frac{7}{24}\left(x^{2}+6 x-1\right)^{1 / 7}+c .
$$

(c) $\int_{-1}^{1} x \sqrt{x^{2}-1}\left(x^{2}-1\right) d x$

Let $u(x)=x^{2}-1$. Then $\frac{d u}{d r}=2 x$, or, $x d x=\frac{1}{2} d u$.
when $x=-1, u=0$

$$
x=1, \quad u=0
$$

Hence $\int_{-1}^{1} x \sqrt{x^{2}-1}\left(x^{2}-1\right) d x=\frac{1}{2} \int_{0}^{5} \sqrt{u} u d u=0$. \quad (prop. \#23 (a))

