Homework 4; Due Thursday, 04/06/2017

Question 1. The Washington monument is 555 feet tall. The height h of a coin dropped from the top of the monument is $h(t)=-16 t^{2}+555$. Here h is measured in feet from the ground, and t is measured in seconds from the moment the coin was dropped.
(a) Sketch the graph of $h(t)$.
(b) How long will it take for the coin to hit the ground?
(c) Determine the coin's velocity when it hits the ground.
(d) Sketch the graph of the velocity $v(t)$. Interpret the graph.
(e) Determine the coin's acceleration $a(t)$ at time t.

Question 2. Compute the derivative of the given function by using derivative rules/formulas. At each step, specify the formula you applied.
(a) $f(x)=(x-1)(x+1)\left(x^{2}+1\right)$
(b) $g(x)=2 \sqrt{x^{3}-2 x}$
(c) $h(t)=\frac{1}{t-1}\left(3-\frac{1}{t+1}\right)$
(d) $p(x)=\sqrt[3]{x}(\sqrt{x}-2 x)$
(e) $j(\ell)=\sqrt{\frac{\ell+1}{\ell-1}}$

Question 3. Determine the equation of the tangent line to the curve $y=\frac{x^{2}-3 x+4}{4 x^{3}-2 x-1}$ at the point corresponding to $x=1$.

Question 4. Use the chain rule to compute the derivative of the given function.
(a) $f(x)=\left(\frac{4-2 x}{x^{2}+x}\right)^{4}$
(b) $g(t)=\sqrt[7]{t^{10}+t^{9}}$
(c) $h(\ell)=\frac{3}{\left(2 \ell^{4}+\ell\right)^{99}}$

Question 5. Compute the value of $(f \circ g)^{\prime}(t)$ at the given value of t.
(a) $f(y)=y^{3}-5 y^{2}+1, \quad g(t)=\sqrt{t-1}, \quad t=5$
(b) $f(y)=\frac{y+1}{y^{2}+1}, \quad g(t)=\frac{1}{t}, \quad t=-1$

Question 6. Calculus@Six Flags: Suppose you are asked to design the first ascent and drop for a new roller coaster. By studying photographs of your favorite coasters, you decide to make the slope of the ascent 0.8 and the slope of the drop -1.6 . You decide to connect these two straight stretches $y=L_{1}(x)$ and $y=L_{2}(x)$ with part of a parabola $y=f(x)=a x^{2}+b x+c$, where x and $f(x)$ are measured in feet. For the track to be smooth, there can't be abrupt changes in direction, so you want the linear segments L_{1} and L_{2} to be tangent to the parabola at the transition points P and Q. To simplify the equations, you decide to place the origin at P.

(1) Answer the following questions:
(a) Suppose the horizontal distance between P and Q is 100 ft . Write equations in a, b and c that will ensure the track is smooth at the transition points.
(b) Solve the equations in part (a) for a, b and c to find a formula for $f(x)$.
(c) Plot L_{1}, f and L_{2} to verify graphically the transitions are smooth.
(d) Find the difference in elevation between P and Q.
(2) Bonus ($+\mathbf{5} \mathbf{~ p t s}$): The solution in Part 1 might look smooth, but it might not feel smooth because the piecewise defined function [consisting of $L_{1}(x)$ for $x<0, f(x)$ for $0 \leq x \leq 100$, and $L_{2}(x)$ for $x>100$] doesn't have a continuous second derivative. So you decide to improve the design by using a quadratic function $q(x)=a x^{2}+b x+c$ only on the interval $10 \leq x \leq 90$ and connecting it to the linear functions by means of two cubic functions:

$$
\begin{gathered}
g(x)=k x^{3}+\ell x^{2}+m x+n, \quad 0 \leq x<10 \\
h(x)=p x^{3}+q x^{2}+r x+s, \quad 90<x \leq 100
\end{gathered}
$$

(a) Write a system of equations in 11 unknowns that ensure that the functions and their first two derivatives agree at the transition points.
(b) Solve the equations in part (a) with a computer algebra system to find formulas $q(x), g(x)$ and $h(x)$.
(c) Plot L_{1}, g, q, h, and L_{2}, and compare the plot in Problem 1(c).

