Formula Sheet - Final Exam - MTH 305 (Spring 2017)

(1) Arithmetic Sequence

A sequence given by a recursive formula of the form $x_{n+1}=x_{n}+d, n \geq 1$ is called an arithmetic sequence with first term x_{1} and common difference d. The direct formula for such a sequence is $x_{n}=x_{1}+(n-1) d, n \geq 1$.
The sum of the first n consecutive terms of an arithmetic sequence is

$$
s_{n}=\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left[x_{1}+(i-1) d\right]=\frac{n}{2}\left(x_{1}+x_{n}\right)=n x_{1}+\frac{n(n-1)}{2} d .
$$

(2) Geometric Sequence

A sequence given by a recursive formula of the form $y_{n+1}=y_{n} \cdot r, n \geq 1$ is called a geometric sequence with first term y_{1} and common ratio r. The direct formula for such a sequence is $y_{n}=y_{1} \cdot r^{n-1}, n \geq 1$. The sum of the first n consecutive terms of a geometric sequence is

$$
s_{n}=\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n}\left[y_{1} \cdot r^{i-1}\right]=\left\{\begin{array}{lll}
y_{1} \frac{r^{n}-1}{r-1} & \text { if } & r \neq 1 \\
n y_{1} & \text { if } & r=1
\end{array}\right.
$$

(3) Convergence of Geometric Series

If a is a nonzero real number, the series $a+a r+a r^{2}+\ldots$ converges whenever $|r|<1$, in which case $\sum_{i=1}^{\infty} a \cdot r^{i-1}=\frac{a}{1-r}$ and diverges whenever $|r| \geq 1$.
(4) Properties of Limits of Sequences

Let $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$ be two convergent sequences and let c be a real number. Then the following hold:
(a) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n}$
(b) $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}-\lim _{n \rightarrow \infty} y_{n}$
(c) $\lim _{n \rightarrow \infty}\left(c \cdot y_{n}\right)=c \cdot \lim _{n \rightarrow \infty} y_{n}$
(d) $\lim _{n \rightarrow \infty}\left(x_{n} \cdot y_{n}\right)=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} y_{n}$
(e) $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\frac{\lim _{n \rightarrow \infty} x_{n}}{\lim _{n \rightarrow \infty} y_{n}} \quad$ (provided $y_{n} \neq 0$ for all n and $\left.\lim _{n \rightarrow \infty} y_{n} \neq 0\right)$
(5) Sandwich theorem for sequences

If the sequences $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$, and $\left\{z_{n}\right\}_{n}$ are such that
(a) $x_{n} \leq y_{n} \leq z_{n}$ for each n, and
(b) $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=L$ for some $L \in \mathbb{R}$,
then the sequence $\left\{y_{n}\right\}_{n}$ is convergent, and $\lim _{n \rightarrow \infty} y_{n}=L$.

(6) Function

A function is determined by two sets, A, B, and a law, f (correspondence, assignment, rule) that associates to each element x in A a unique element y in B. The set A is called the domain of the function, while B is called the codomain of the function. In addition, Range $(f)=\{f(x): x \in A\}$.
(7) Composite Functions

Suppose f and g are real-valued functions. Then the composition of f with g, denoted $f \circ g$, is the function $(f \circ g)(x)=f(g(x))$, which is defined for all real values x in the domain of g and for which $g(x)$ is in the domain of f.
(8) Limit of a function

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

(9) Limit Laws

Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist. Then
(a) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(b) $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(c) $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
(d) $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad$ (provided $\lim _{x \rightarrow a} g(x) \neq 0$)
(f) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where n is a positive integer
(g) $\lim _{x \rightarrow a} c=c$
(h) $\lim _{x \rightarrow a} x=a$
(i) $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer
(j) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ where n is a positive integer. (If n is even, we assume that $a>0$.)
(k) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer.
(If n is even, we assume that $\lim _{x \rightarrow a} f(x)>0$.)
(10) Direct substitution property

If f is a polynomial or a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$.
(11) Squeeze/Sandwich theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
(12) Continuity

A function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.
(a) Any polynomial is continuous everywhere (i.e., it is continuous on \mathbb{R})
(b) Any rational (as well as root and trigonometric) function is continuous wherever it is defined (i.e., it is continuous on its domain)
(13) Intermediate Value Theorem

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.
(14) Exponent Rules

Fix a real number $b>0$ and take m, n to be whole numbers. Then
(a) $b^{m}=b \cdot b \cdots b(m$ copies of $b)$
(b) $b^{-m}=\frac{1}{b^{m}}$
(c) $b^{\frac{1}{n}}=\sqrt[n]{b}$
(d) $b^{\frac{m}{n}}=\sqrt[n]{b^{m}}$
(e) $b^{-\frac{m}{n}}=\frac{1}{b^{\frac{m}{n}}}$

More generally, fix a real number $b>0$ and let x be a real number. Then $f(x)=b^{x}$ is an exponential function with base b. For all real numbers x, y, we have
(a) $b^{-x}=\frac{1}{b^{x}}$
(b) $b^{x+y}=b^{x} b^{y}$
(c) $\left(b^{x}\right)^{y}=b^{x y}$
(15) Rates of Change and Derivatives

The average rate of change of a function f over an interval $[a, b]$ is by definition the value of

$$
\frac{f(b)-f(a)}{b-a}
$$

The derivative of a function f at point x, denoted by $f^{\prime}(x)$, (also called the instantaneous rate of change of f at x) is the limit

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided it exists. We say f is differentiable at x. Alternatively,

$$
f^{\prime}(x)=\lim _{y \rightarrow x} \frac{f(y)-f(x)}{y-x}
$$

If f is differentiable at x, then $f^{\prime}(x)$ equals the slope of the tangent line to the graph of f at the point $(x, f(x))$.
(16) Position, Velocity, Acceleration

If $h(t)$ denotes the position function at time t of an object moving along a straight line, then $v(t)=h^{\prime}(t)$ is the velocity of the object at time $t, s(t)=|v(t)|$ is the object's speed at time t, while $a(t)=v^{\prime}(t)=h^{\prime \prime}(t)$ is the object's acceleration at time t.
(17) Relation between f and f^{\prime}

If f is a differentiable function on (a, b), then the following are true.
(a) f is nonincreasing on (a, b) if and only if $f^{\prime} \leq 0$ on (a, b).
(b) f is nondecreasing on (a, b) if and only if $f^{\prime} \geq 0$ on (a, b).
(c) If $f^{\prime}<0$ on (a, b), then f is decreasing on (a, b).
(d) If $f^{\prime}>0$ on (a, b), then f is increasing on (a, b).
(e) The tangent line to the graph of f at $(c, f(c))$ is horizontal if and only if $f^{\prime}(c)=0$.
(18) Derivative Rules

Here the functions f and g are supposed to be differentiable, the functions appearing in the denominators are assumed to be nonzero, and f is assumed to be positive when considering $(\sqrt{f})^{\prime}$.
(a) Power rule: $\left(x^{a}\right)^{\prime}=a x^{a-1}$ for any rational number a.
(b) Constant multiple rule: $(c f)^{\prime}=c(f)^{\prime}$ for any real number c.
(c) Sum and difference rule: $(f \pm g)^{\prime}=f^{\prime} \pm g^{\prime}$
(d) Product rule: $(f \cdot g)^{\prime}=f^{\prime} \cdot g+f \cdot g^{\prime}$
(e) Reciprocal rule: $\left(\frac{1}{f}\right)^{\prime}=-\frac{f^{\prime}}{f^{2}}$
(f) Quotient rule: $\left(\frac{f}{g}\right)^{\prime}=\frac{f^{\prime} \cdot g-f \cdot g^{\prime}}{g^{2}}$
(g) Square-root rule: $(\sqrt{f})^{\prime}=\frac{f^{\prime}}{2 \sqrt{f}}$
(h) Chain rule: $(f(g(x)))^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$ (at points x where both $f(g(x))$ and $f^{\prime}(g(x))$ are defined).
(19) Derivatives of Some Common Functions
(a) $\frac{d}{d x}\left(e^{x}\right)=e^{x}$
(b) $\frac{d}{d x}\left(a^{x}\right)=a^{x} \ln a$ (Note: $\ln x$ is the same as $\log _{e} x$)
(c) $\frac{d}{d x}(\ln x)=\frac{1}{x}$
(d) $\frac{d}{d x}\left(\log _{a} x\right)=\frac{1}{x \ln a}$
(e) $\frac{d}{d x}(\sin x)=\cos x$
(f) $\frac{d}{d x}(\cos x)=-\sin x$
(g) $\frac{d}{d x}(\tan x)=\sec ^{2} x$
(20) Antiderivatives

The set of all antiderivatives of f is denoted by $\int f(x) d x$; for simplicity, we write $\int f(x) d x=F(x)+C$, where F is an arbitrary antiderivative of f and C is a numerical constant.
(21) Properties of (Indefinite) Integrals
(a) $\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C, n \neq-1$
(Power rule)
(b) $\int \frac{1}{x} d x=\ln |x|+C$
(Logarithmic rule)
(c) $\int e^{x} d x=e^{x}+C$
(Exponential rule)
(d) $\int k f(x) d x=k \int f(x) d x$

Scalar multiplication rule)
(e) $\int(f \pm g)(x) d x=\int f(x) d x \pm \int g(x d x$
(Addition/Difference rule)
(f) $\int u^{n}(x) u^{\prime}(x) d x=\frac{1}{n+1} u^{n+1}(x)+C, n \neq-1$
(General power rule)
(g) $\int e^{u(x)} u^{\prime}(x) d x=e^{u(x)}+C$
(General exponential rule)
(h) $\int f[g(x)] g^{\prime}(x) d x=f[g(x)]+C$
(Chain rule)
(22) Definite Integrals

The definite integral of f from a to b, denoted by $\int_{a}^{b} f(x) d x$, is by definition the variation of any antiderivative of F of f over the interval $[a, b]$; that is, $F(b)-F(a)$.
(23) Properties of Definite Integrals
(a) $\int_{a}^{a} f(x) d x=0$
(b) $\int_{a}^{b} f(x) d x=-\int_{b}^{a} f(x) d x$
(c) $\int_{a}^{c} f(x) d x=\int_{a}^{b} f(x) d x+\int_{b}^{c} f(x) d x$
(d) $\int_{a}^{b} k f(x) d x=k \int_{a}^{b} f(x) d x$
(e) $\int_{a}^{b}(f \pm g)(x) d x=\int_{a}^{b} f(x) d x \pm \int_{a}^{b} g(x) d x$
(24) Method of Substitution

To evaluate an (indefinite) integral $\int f(x) d x$ using the method of substitution,
(a) Choose a new variable $u=u(x)$ that would simplify integration.
(b) Compute $u^{\prime}(x)$.
(c) Express the integral in terms of u by using the fact that $d u=u^{\prime}(x) d x$.
(d) Evaluate the integral using this new expression.
(e) Rewrite your final answer in terms of x.
(25) Integration by Parts

$$
\int u v^{\prime} d x=u v-\int u^{\prime} v d x
$$

