Formula Sheet - Mid-Term Exam - MTH 305 (Spring 2017)

(1) Arithmetic Sequence

A sequence given by a recursive formula of the form $x_{n+1}=x_{n}+d, n \geq 1$ is called an arithmetic sequence with first term x_{1} and common difference d. The direct formula for such a sequence is $x_{n}=x_{1}+(n-1) d, n \geq 1$.
The sum of the first n consecutive terms of an arithmetic sequence is

$$
s_{n}=\sum_{i=1}^{n} x_{i}=\sum_{i=1}^{n}\left[x_{1}+(i-1) d\right]=\frac{n}{2}\left(x_{1}+x_{n}\right)=n x_{1}+\frac{n(n-1)}{2} d .
$$

(2) Geometric Sequence

A sequence given by a recursive formula of the form $y_{n+1}=y_{n} \cdot r, n \geq 1$ is called a geometric sequence with first term y_{1} and common ratio r. The direct formula for such a sequence is $y_{n}=y_{1} \cdot r^{n-1}, n \geq 1$. The sum of the first n consecutive terms of a geometric sequence is

$$
s_{n}=\sum_{i=1}^{n} y_{i}=\sum_{i=1}^{n}\left[y_{1} \cdot r^{i-1}\right]=\left\{\begin{array}{lll}
y_{1} \frac{r^{n}-1}{r-1} & \text { if } & r \neq 1 \\
n y_{1} & \text { if } & r=1
\end{array}\right.
$$

(3) Convergence of Geometric Series

If a is a nonzero real number, the series $a+a r+a r^{2}+\ldots$ converges whenever $|r|<1$, in which case $\sum_{i=1}^{\infty} a \cdot r^{i-1}=\frac{a}{1-r}$ and diverges whenever $|r| \geq 1$.
(4) Properties of Limits of Sequences

Let $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$ be two convergent sequences and let c be a real number. Then the following hold:
(a) $\lim _{n \rightarrow \infty}\left(x_{n}+y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}+\lim _{n \rightarrow \infty} y_{n}$
(b) $\lim _{n \rightarrow \infty}\left(x_{n}-y_{n}\right)=\lim _{n \rightarrow \infty} x_{n}-\lim _{n \rightarrow \infty} y_{n}$
(c) $\lim _{n \rightarrow \infty}\left(c \cdot y_{n}\right)=c \cdot \lim _{n \rightarrow \infty} y_{n}$
(d) $\lim _{n \rightarrow \infty}\left(x_{n} \cdot y_{n}\right)=\lim _{n \rightarrow \infty} x_{n} \cdot \lim _{n \rightarrow \infty} y_{n}$
(e) $\lim _{n \rightarrow \infty} \frac{x_{n}}{y_{n}}=\frac{\lim _{n \rightarrow \infty} x_{n}}{\lim _{n \rightarrow \infty} y_{n}} \quad$ (provided $y_{n} \neq 0$ for all n and $\left.\lim _{n \rightarrow \infty} y_{n} \neq 0\right)$
(5) Sandwich theorem for sequences

If the sequences $\left\{x_{n}\right\}_{n},\left\{y_{n}\right\}_{n}$, and $\left\{z_{n}\right\}_{n}$ are such that
(a) $x_{n} \leq y_{n} \leq z_{n}$ for each n, and
(b) $\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty} z_{n}=L$ for some $L \in \mathbb{R}$,
then the sequence $\left\{y_{n}\right\}_{n}$ is convergent, and $\lim _{n \rightarrow \infty} y_{n}=L$.

(6) Function

A function is determined by two sets, A, B, and a law, f (correspondence, assignment, rule) that associates to each element x in A a unique element y in B. The set A is called the domain of the function, while B is called the codomain of the function. In addition, Range $(f)=\{f(x): x \in A\}$.
(7) Composite Functions

Suppose f and g are real-valued functions. Then the composition of f with g, denoted $f \circ g$, is the function $(f \circ g)(x)=f(g(x))$, which is defined for all real values x in the domain of g and for which $g(x)$ is in the domain of f.
(8) Limit of a function

$$
\lim _{x \rightarrow a} f(x)=L \quad \text { if and only if } \quad \lim _{x \rightarrow a^{-}} f(x)=L=\lim _{x \rightarrow a^{+}} f(x)
$$

(9) Limit Laws

Suppose that c is a constant and the limits

$$
\lim _{x \rightarrow a} f(x) \quad \text { and } \quad \lim _{x \rightarrow a} g(x)
$$

exist. Then
(a) $\lim _{x \rightarrow a}[f(x)+g(x)]=\lim _{x \rightarrow a} f(x)+\lim _{x \rightarrow a} g(x)$
(b) $\lim _{x \rightarrow a}[f(x)-g(x)]=\lim _{x \rightarrow a} f(x)-\lim _{x \rightarrow a} g(x)$
(c) $\lim _{x \rightarrow a}[c f(x)]=c \lim _{x \rightarrow a} f(x)$
(d) $\lim _{x \rightarrow a}[f(x) g(x)]=\lim _{x \rightarrow a} f(x) \cdot \lim _{x \rightarrow a} g(x)$
(e) $\lim _{x \rightarrow a} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow a} f(x)}{\lim _{x \rightarrow a} g(x)} \quad$ (provided $\lim _{x \rightarrow a} g(x) \neq 0$)
(f) $\lim _{x \rightarrow a}[f(x)]^{n}=\left[\lim _{x \rightarrow a} f(x)\right]^{n}$ where n is a positive integer
(g) $\lim _{x \rightarrow a} c=c$
(h) $\lim _{x \rightarrow a} x=a$
(i) $\lim _{x \rightarrow a} x^{n}=a^{n}$ where n is a positive integer
(j) $\lim _{x \rightarrow a} \sqrt[n]{x}=\sqrt[n]{a}$ where n is a positive integer. (If n is even, we assume that $a>0$.)
(k) $\lim _{x \rightarrow a} \sqrt[n]{f(x)}=\sqrt[n]{\lim _{x \rightarrow a} f(x)}$ where n is a positive integer.
(If n is even, we assume that $\lim _{x \rightarrow a} f(x)>0$.)
(10) Direct substitution property

If f is a polynomial or a rational function and a is in the domain of f, then $\lim _{x \rightarrow a} f(x)=f(a)$.
(11) Squeeze/Sandwich theorem

If $f(x) \leq g(x) \leq h(x)$ when x is near a (except possibly at a) and $\lim _{x \rightarrow a} f(x)=\lim _{x \rightarrow a} h(x)=L$, then $\lim _{x \rightarrow a} g(x)=L$.
(12) Continuity

A function f is continuous at a number a if $\lim _{x \rightarrow a} f(x)=f(a)$.
(a) Any polynomial is continuous everywhere (i.e., it is continuous on \mathbb{R})
(b) Any rational (as well as root and trigonometric) function is continuous wherever it is defined (i.e., it is continuous on its domain)
(13) Intermediate Value Theorem

Suppose that f is continuous on the closed interval $[a, b]$ and let N be any number between $f(a)$ and $f(b)$, where $f(a) \neq f(b)$. Then there exists a number c in (a, b) such that $f(c)=N$.

