
Lab 2: We are Rocket Scientists

This lab focuses on (1) exploring the growth properties of the natural logarithm and natural
exponential functions introduced in sections 6.2 and 6.3 of Stewart and (2) illustrating one of the
principal philosophies for solving real world problems using calculus. The philosophy is, in a
nutshell, that it can be useful to approximate discrete processes with continuous ones because
continuous processes can be analyzed using the methods of calculus, while discrete ones
cannot.

Point (2) and its reverse (solving continuous problems using discrete approximations; which
describes basically all computer simulations) are themes that we will revisit often throughout this
course. They are also what makes calculus such a powerful tool in engineering disciplines.

1.1 - What's the point?
In the previous lab we've explored the (in)feasibility of space elevators, we now turn our attention
to the more conventional way of getting satellites up into space. As mentioned in the first lab,
rocket launches are "very expensive, dangerous, and consume incredible amounts of fuel"; the
first two problems are invariably tied to the third.

If you look at the modern Atlas V rocket, out of its 335-ton (metric) weight, only between 4 to 20
tons are the payload, an efficiency of about 6%. The fuel required for the lanuch takes up about
300 tons, or about 90% of the total launch weight. Why does it need so much fuel?

To understand this, first we need to understand how rockets work.

1.2 - How do rockets work? A crash course in
physics
Unlike airplanes which work by complicated laws of fluid dynamics, rockets can be entirely
explained by Newton's third law: for every action that is an equal but opposite reaction. The
exhaust spits out one way, and the rocket accelerates in the other direction. To understand this a
bit better, let us play some "fantasy baseball" with help from Robin Roberts, who happens to be
the only MSU alum in the baseball Hall of Fame.

A baseball weighs 5 to 5.25 ounces (approximate 145 grams or 0.145 kg). Robin can throw at 90
mph (approximately 40 m/s). Using that

the momentum carried by a major league fastball is about  kg m/s.

Now the fantasy part: suppose the baseball diamond's surface is replaced by ice. What happens
to Robin after he pitches? The quantitative description of Newton's third law is called
conservation of momentum. Initially Robin and the baseball are at rest, so they have zero
momentum. After the pitch, the ball flies one way with 5.8 kg m/s of momentum, which by the
conservation law means that Robin must slide in the opposite direction with also 5.8 kg m/s of

Momentum = Mass  ⋅  Velocity

40 × 0.145 = 5.8



momentum. Now Robin is listed at 190 lbs (about 86 kg), so dividing the momentum by his mass
we can find his speed  m/s (or about 2.5 inches per second; slow but
noticeable).

2.1 - The Robin Roberts Rocket
Now let us build a Rocket out of Robin Roberts and a giant bag of baseballs.

The equation that governs the Robin-Roberts-Rocket is the conservation of momentum

The momentum before the pitch is

where  kg is the mass of Robin Roberts,  kg is the mass of one
baseball, and  is the number of baseballs in the bag before the pitch. The velocity  is the
speed at which Robin, together with his bag of balls, is moving before his pitch.

The momentum after the pitch is

where  m/s is the speed at which Robin throws his baseball.

DISCUSSION QUESTION 1
Answer discussion question 1 on your lab answer sheet now.

2.2 - Simulation
We can make this in code form.

In [ ]:

Remember the syntax for MATLAB where to define a function depending on several inputs, we
write

function = @(input1, input2, ..., inputN) expression

Now let's wrap this code in a loop to see how much speed our Robin-Roberts-Rocket can pick
up, after throwing all his balls. (For more about the while loop, see the documentation
(http://www.mathworks.com/help/matlab/ref/while.html?refresh=true).)

5.8/86 ≈ 0.067

Momentum before a pitch = Momentum after the pitch

Momentum before the pitch = ( + k ⋅ ) ×MRR MBB vi (1)
= 86MRR = 0.145MBB

k vi

Momentum after pitch = ( + (k − 1) ⋅ ) × + × ( − )MRR MBB vf MBB vi vB (2)

= 40vB

% First define the constants
M_RR = 86; % Mass of Robin Roberts
M_BB = 0.145; % Mass of one baseball
v_B = 40; % Speed of Robin's fastball
 
% Next define a function that, when given the number of baseballs initially and the velocity initially,
% computes the final velocity (v_f in equation (2) above).
v_f = @(v_i, k) v_i + (M_BB * v_B) / (M_RR + (k-1) * M_BB)

http://www.mathworks.com/help/matlab/ref/while.html?refresh=true


In [ ]:

RESULTS QUESTION 1
Answer results question 1 on your lab answer sheet now.

DISCUSSION QUESTION 2
Answer discussion question 2 on your lab answer sheet now.

2.3 - Melon Husk's request
The billionaire Melon Husk came by and wants to know if our Robin Roberts Rocket can begin
from a standing start, accelerate to a specified speed, and slow down again close to a stop. To
simulate this, we need to modify our code slightly.

The following code outputs the maximum speed attained, as well as the final speed after Robin
Roberts has exhausted all the baseballs. The input data are the number of balls allotted for the
accelerating phase of the rocket, and the number of balls allotted for the decelerating phase of
the rocket.

num_balls = 500; %Initial number of balls
speed = 0; %Very initial velocity, in m/s
 
while num_balls > 0
    speed = v_f(speed,num_balls);
    num_balls = num_balls - 1;
end
 
speed  % Show the final speed



In [ ]:

RESULTS QUESTION 2
Answer results question 2 on your lab answer sheet now.

DISCUSSION QUESTION 3
Answer discussion question 3 on your lab answer sheet now.

3 - The Rocket Equation
Try running the code from Section 2.3 with the number of balls used in phase 1 being 15 million,
and the number of balls used in phase 2 being 100,000. That is the approximate number of balls
needed to get to the maximum speed of 200 m/s, which is roughly the speed of an airliner. Notice
how long it took the code to run! For real-life simulations (where the "baseballs" are replaced by
"tiny molecules of exhaust") it will be extremely impractical to compute the amount of fuel needed
by trial-and-error using code like the above.

And here, calculus comes to the rescue.

3.1 - Derivation of the rocket equation
Let  denote the total mass on board our rocket:  when there are 
baseballs left; then while accelerating, we can think of the speed  of our rocket as a function of
the mass . Then rearranging your answer to Discussion Question 1, part 2 (or alternatively the
code in Section 2.2) we get that

M M = + k ×MRR MBB k

v

M

% We define a new function to compute the final velocity based on the initial velocity v_i, and the initial number
% of balls k, when Robin Roberts is now throwing the ball in the opposite direction in order to slow down.
v_f2 = @(v_i, k)  v_i - (M_BB * v_B) / (M_RR + (k-1) * M_BB);
 
% Data
num_balls_accelerating = 500; % number of balls to use for phase 1, the accelerating phase.
num_balls_decelerating = 500; % number of balls to use for phase 2, the decelerating phase. 
speed = 0; % Initial velocity, in m/s
 
while num_balls_accelerating > 0
    speed = v_f(speed,num_balls_accelerating+num_balls_decelerating);
    num_balls_accelerating = num_balls_accelerating - 1;
end
 
maxspeed = speed;
 
while num_balls_decelerating > 0
    speed = v_f2(speed,num_balls_decelerating);
    num_balls_decelerating = num_balls_decelerating - 1;
end
 
maxspeed, speed



Now, since Robin Roberts weigh a lot more than a baseball, we can pretend that  is
infinitesimal. Similarly, the change of speed given by one baseball (0.067 m/s from our discussion
in Section 2) is very small, and we can also pretend it to be an infinitesimal quantity.

This leads us to the following equation

Here,  is the function describing the velocity of the rocket ad a function of the remaining
mass onboard the rocket. The number  is a constant, which describes the speed of the rocket
exhaust. The minus sign in front of the right hand side comes from the fact that the the mass of
the rocket is decreasing.

Equation (3) is called the ideal rocket equation. We can integrate it using what we've learned
about natural logarithms! This gives

The great thing about equation (4) is that we can solve this for the mass in terms of the desired
velocity. In the equation, the velocity  is the final velocity at the and of the accleration
process,  is the inital velocity before accelerating.  and  are the total mass of the
rocket before and after acceleration respectively.

RESULTS QUESTION 3
Answer results question 3 on your lab answer sheet now.

3.2 - Bonus material: now add gravity
So far our Robin Roberts Rocket has just been zooming around on top of an ice rink. But real
rockets (for going into space) need to go up. So we have to add the effects of gravity into the
equation. Going back to equation (3); instead of writing  as a function of , we can write both 
and  as function of , the time. Then by chain rule we have that

so in the absence of gravity equation (3) reads

where  again is the speed of the exhaust, taken to be a constant.

If we were to add gravity, the force of gravity introduces a gravitational acceleration of 
m/s^2 (for everything up to low-earth orbit, the decrease in the gravitational acceleration due to
the increase in altitude is negligible, being no more than 10% of the total). So the equation
becomes

Notice that  as the rocket is losing mass to its exhaust.
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Chemical propellants (such as those used in the Atlas V (https://en.wikipedia.org/wiki/Atlas_V))
can provide a  m/s.

Engineering limits of controlled burn (instead of explosions) allow the rocket fuel to be consumed
at a maximum of about 1000 kg/s (for a single rocket engine). (In other words, if we don't want
our rocket to blow up, the rate of fuel consumption  has to be, in units of kg/s, 

.)

To achieve lift-off, the rocket must have . So rearranging equation (5) we have

So our engineering limits put an upper limit of maximum lift-off-weight (this includes the payload,
the rocket itself, and the fuel!) for a single engine rocket to be approximately

The Atlas-V's launch weight of 335 tons is pretty close to the engineering limit.

Simulation

The following code simulates the vertical launch of a chemical rocket with maximal burn rate of
1000 kg/s and exhaust velocity of 4000 m/s.

≈ 4000vB

(t)M ′

−1000 < (t) < 0M ′

(0) > 0v′

(0) = − g = − 9.8v′
− (0)vBM

′

M(0)

4000000

M(0)
(6)

M(0) = ≈ 400000 kilograms
4000000

9.8

https://en.wikipedia.org/wiki/Atlas_V


In [ ]:

The code above stores the flight history of our rocket in terms of two arrays. height and 
velocity. We can plot the height as a function of time like below. We see that for the default
values (150 metric tons of fuel launching an 8000 kilogram object) we easily reach "outer space"
(which is 10^5 meters from the surface of the earth), and quite easily get into the height of the so-
called "medium earth orbit" (1200 to 22000 miles).

In [ ]:

But as you can see, in our simulation, the rocket eventually comes back down. Part of it is
because we launched it straight up (so no sideways motion to allow it to orbit). But does it have,
in principle, enough speed to get into orbit? The following plot shows two curves, one is the
speed of the rocket, the other is the equivalent orbital velocity at the corresponding height.

% Modifiable parameters
Vehicule_Mass = 8000; % The mass of the rocket including all structure components, excluding the fuel
     % and the fuel tank. Measured in kg. 
Propellent_Mass = 150000; % The mass of fuel carried on board at launch. Measured in kg. 
     % We will calculate the fuel-tank size as proportional to the propellent. A reasonable estimate is that 
     % the fuel tank needs to weigh around 10% of the propellent
Fuel_Tank_Ratio = 0.1; % Mass of Fuel Tank / Propellent mass 
 
% As the sum of the Vehicule_Mass and the Propellent_Mass (multiplied by 110% to account for the tank)
% is the total mass of the rocket initially, try to make sure that the sum is less than 400,000 so 
% you don't get absurd answers. 
 
%%% Code
height = [];
velocity = [];
height(1) = 1; % Suppose initially the rocket is still on a 1 meter high platform
velocity(1) = 0; % Initially at rest
Burn_Rate = 1000; % The rate of fuel consumption, in kg/s. 
 
 
current_mass = Vehicule_Mass + Propellent_Mass * (1 + Fuel_Tank_Ratio);
 
timing_resolution = 0.01; % Time-step-size in seconds; keep it less than 0.05 to be realistic.
 
while height(end) > 0
    if current_mass <= Vehicule_Mass + Fuel_Tank_Ratio * Propellent_Mass
        velocity(end+1) = velocity(end) - timing_resolution * 9.8 / (1 + 
    else
        velocity(end+1) = velocity(end) - timing_resolution * 9.8 / (1 + 
        current_mass = current_mass - Burn_Rate * timing_resolution;
    end
    
    height(end+1) = height(end) + velocity(end) * timing_resolution;
end

plot(height)
xlabel({'elapsed time', ['(in units of ', num2str(timing_resolution), ' seconds)'
ylabel({'height', ['(in units of meters)']})



In [ ]:

A Vehicule_Mass of 8000 kilograms corresponds roughly to the launch of a DirectTV satellite.
Playing around with the graphs above, you see that with modern technology, it is in fact not
possible to launch such a satellite into orbit (the vehicule speed never exceeds the orbital
velocity!) using a single-stage, single-engine rocket. The modern solution is to use "multi-stage"
rockets. The basic idea is this:

1. For single stage rockets, the fuel tank remains attached to the launch vehicule at all times.
2. For multi-stage rockets, the fuel tank is segmented, and one segment empties, the fuel-tank

separates and drops off.

Think about why it is that the multi-stage rockets can achieve a higher velocity for the same
amount of fuel.

An alternative possibility is to reduce the amount of material used for the fuel tank. Current
structural engineering limitations means that the tank must at minimum weigh 8% of the fuel that
it contains. Play around with the simulation above by modifying the Fuel_Tank_Ratio
parameter to see how, with improvements in material science and structural engineering that it
may become possible to launch a DirectTV satellite using a single stage rocket and only 150 ton
of fuel.

In [ ]:

plot(velocity(1:150000))   % Plot only the first 1500 seconds of flight
hold on
plot(7900 ./ sqrt(1 + height(1:150000) ./ 6400000 ))
legend('Speed of rocket','Orbital velocity at corresponding height', 'Location'
xlabel({'elapsed time',['(in units of ',num2str(timing_resolution),' seconds)'
ylabel('speed (m/s)')

 


