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The Phase Retrieval Problem

find1 x ∈ Cd given |Mx|2 + n = b ∈ RD,

where

• b ∈ RD denotes the phaseless (or magnitude-only)
measurements,

• M ∈ CD×d is a measurement matrix associated with these
measurements, and

• n ∈ RD is measurement noise.

Let A : RD → Cd denote the recovery method. The phase
retrieval problem involves designing measurement matrix and
recovery method pairs, (M,A).

1(upto a global phase offset)
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Motivating Applications

From Huang, Xiaojing, et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

The Phase Retrieval problem arises in many molecular imaging
modalities, including

• X-ray crystallography

• Ptychography

Other applications can be found in optics, astronomy and speech
processing.
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Existing Computational Approaches

• Alternating projection methods
[Fienup, 1978], [Fannjiang and Liao, 2012], . . .

• Methods based on semidefinite programming
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,

2012], . . .

• Others
• Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

• (Stochastic) gradient descent [Candes et al., 2014]

. . . and variants for sparse and/or structured signal models.
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Existing Computational Approaches

• Alternating projection methods – No recovery guarantees
[Fienup, 1978], [Fannjiang and Liao, 2012], . . .

• Methods based on semidefinite programming – Expensive
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,

2012], . . .

• Others
• Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

• (Stochastic) gradient descent [Candes et al., 2014]

Most methods require random measurement constructions.
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Today. . .

• We discuss a recently introduced essentially linear-time phase
retrieval algorithm based on (deterministic2) local correlation
measurement constructions.

• We provide rigorous theoretical recovery guarantees and
present numerical results showing the accuracy, efficiency and
robustness of the method.

2for a large class of real-world signals
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Key Components

1 Local Measurements: Each measurement provides
information about some local region of x.

2 Local Lifting: Use compactly supported masks and
correlation measurements to obtain phase difference estimates.

|Corr(mi,x)|2
solve−−−−−−−−→

linear system
{xjx∗k}|j−k mod d<δ|

• mi is a mask or window function with δ non-zero entries.
• xjx∗k provides (scaled) phase difference between xj and xk.

3 Angular Synchronization: Use the phase differences to
obtain the phases of the unknown signal.

{xjx∗k}|j−k mod d<δ|
angular−−−−−−−−−−→

synchronization
{xj}dj=1

Constraint on x: We require x to be “flat”.
(At most δ consecutive entries in x with magnitude < ‖x‖2

2
√
d

)
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Measurement Constructions

Adapted from Huang et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

• We consider measurements motivated by Ptychographic
molecular imaging.

• Measurements are local; the full reconstruction is obtained by
imaging shifts of the specimen.
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Model Problem

Recover an unknown vector x ∈ C4 from noiseless measurements

y = |Mx|2 ,

where y ∈ R12 and M ∈ C12×4 has the following structure:

M =

M1

M2

M3

 , Mi =


(mi)1 (mi)2 0 0
0 (mi)1 (mi)2 0
0 0 (mi)1 (mi)2

(mi)2 0 0 (mi)1

 .
Here, m{1,2,3} ∈ C4 are masks with local support (with δ = 2
non-zero entries).
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Local Correlation Measurements

These correspond to local correlation measurements

(y`)i =

∣∣∣∣∣
δ=2∑
k=1

(m`)k · xi+k−1

∣∣∣∣∣
2

, (`, i) ∈ {1, 2, 3} × {1, 2, 3, 4}

=

δ∑
j,k=1

(m`)j (m`)
∗
k xi+j−1 x

∗
i+k−1 :=

δ∑
j,k=1

(m`)j,k xi+j−1 x
∗
i+k−1.

This is a linear system for the phase differences {xjx∗k}!

Note: the masks m{1,2,3} (which are related to the aperture
transmission function of the imaging system) are known - either by
design or through calibration.
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Solving for Phase Differences

Writing out the correlation sum, we obtain the linear system

M ′ z = b̃,

where

z =
[
|x1|2 x1x

∗
2 x2x

∗
1 |x2|2 x2x

∗
3 x3x

∗
2 |x3|2 x3x

∗
4 x4x

∗
3 |x4|2 x4x

∗
1 x1x

∗
4

]T
,

b̃ =
[
(y1)1 (y2)1 (y3)1 (y1)2 (y2)2 (y3)2 (y1)3 (y2)3 (y3)3 (y1)4 (y2)4 (y3)4

]T
,

M ′=



(m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0 0 0 0
(m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0 0 0 0
(m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0 0 0 0

0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0 0 0 0
0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0 0 0 0
0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0 0 0 0
0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1 (m1)2,2 0 0
0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1 (m2)2,2 0 0
0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1 (m3)2,2 0 0

(m1)2,2 0 0 0 0 0 0 0 0 (m1)1,1 (m1)1,2 (m1)2,1
(m2)2,2 0 0 0 0 0 0 0 0 (m2)1,1 (m2)1,2 (m2)2,1
(m3)2,2 0 0 0 0 0 0 0 0 (m3)1,1 (m3)1,2 (m3)2,1


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Back to our Example . . .[
|x1|2 x1x∗2 x2x∗1 |x2|2 x2x∗3 x3x∗2 |x3|2 x3x∗4 x4x∗3 |x4|2 x4x∗1 x1x∗4

]Ty(re-arrange)
|x1|2 x1x

∗
2 0 x1x

∗
4

x2x
∗
1 |x2|2 x2x

∗
3 0

0 x3x
∗
2 |x3|2 x3x

∗
4

x4x
∗
1 0 x4x

∗
3 |x4|2

 (2δ − 1 entries in band)

y(normalize)
1 ei(φ1−φ2) 0 ei(φ1−φ4)

ei(φ2−φ1) 1 ei(φ2−φ3) 0

0 ei(φ3−φ2) 1 ei(φ3−φ4)

ei(φ4−φ1) 0 ei(φ4−φ3) 1


y(angular synchronization)

φ1, φ2, φ3, φ4

(Signal Reconstruction)
[
|x1|eiφ1 |x2|eiφ2 |x3|eiφ3 |x4|eiφ4

]T
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The Angular Synchronization Problem

The Angular Synchronization Problem

Estimate d unknown angles φ1, φ2, . . . , φd ∈ [0, 2π) from noisy and
possibly incomplete measurements of their differences,

φi,j := φi − φj mod 2π.

• Several possible approaches: eigenvector methods,
semidefinite programming . . .

• Today: Greedy angular synchronization
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Greedy Angular Synchronization

1 Set the largest magnitude component to have zero phase
angle; i.e.,

arg(xj) = 0, j = argmax
i
|xi|2.

2 Use this entry to set the phase angles of its δ neighboring
entries; i.e.,

arg(xk) = arg(xj)− φj,k, |j − k mod d| < δ.

3 Use the next largest magnitude component from these δ
entries and repeat the process.
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Greedy Angular Synchronization[
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y(normalize)
1 e

i(φ1 − φ2︸ ︷︷ ︸
φ1,2

)

0 ei(φ1−φ4)

ei(φ2−φ1) 1 ei(φ2−φ3) 0

0 ei(φ3−φ2) 1 ei(φ3−φ4)

ei(φ4−φ1) 0 ei(φ4−φ3) 1


y(angular synchronization)

φ1, φ2, φ3, φ4
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Greedy Angular Synchronization

Applying this to our example problem. . .

• Assume, without loss of generality, that
|x1| ≥ |xi|, i ∈ {2, 3, 4}.

1 We start by setting3 arg(x1) = 0.

2 We may now set the phase of x2 and x4 using the estimated
phase differences φ1,2 and φ1,4 respectively; i.e.,

arg(x2) = arg(x1)− φ1,2, arg(x4) = arg(x1)− φ1,4.

3 Similarly, we next set arg(x3) = arg(x2)− φ2,3, thereby
recovering all of the entries’ unknown phases.

3Recall that we can only recover x up to an unknown global phase factor
which, in this case, will be the true phase of x1.
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Block-Circulant Matrix: Condition Number Bounds

Theorem (Iwen, V., Wang 2015)

Choose entries of the measurement mask (mi) as follows:

(mi)` =

{
e−`/a
4√2δ−1 · e

2πi·i·`
2δ−1 , ` ≤ δ

0, ` > δ
,

a := max
{
4, δ−12

}
,

i = 1, 2, . . . , N.

Then, the resulting system matrix for the phase differences, M ′,
has condition number

κ(M ′) < max

{
144e2,

9e2

4
· (δ − 1)2

}
.

• Deterministic (windowed DFT-type) measurement masks!

• δ is typically chosen to be c log2 d with c small (2–3).

• Extensions: oversampling, random masks . . . .
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Recovery Guarantee – Non-Sparse (“Flat”) Signals

Theorem (Iwen, V., Wang 2015)

There exist fixed universal constants C,C ′ ∈ R+ such that
following holds: Let M ∈ CD×d be defined as in the previous slide,
and suppose that x ∈ Cd is non-sparsea with d > 2 and
‖x‖22 ≥ C (δ − 1)d2 ‖n‖2. Then, the proposed algorithm is
guaranteed to recover an x̃ ∈ Cd with

min
θ∈[0,2π)

∥∥∥x− eiθx̃∥∥∥2
2
≤ C ′d2(δ − 1)‖n‖2

when given arbitrarily noisy input measurements
b = |Mx|2 + n ∈ RD. Furthermore, the algorithm requires just
O(δ · d log d) operations for this choice of M ∈ CD×d.

adoes not have more than b(δ − 3)/2c consecutive zeros or small entries; see
preprint for details.
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Recovery Guarantee - Arbitrary Signals

Theorem (Iwen, V., Wang 2015)

Let x ∈ Cd with d sufficiently large have
‖x‖22 ≥ C (d ln d)2 ln3(ln d) ‖n‖2.a Then, one can select a
random measurement matrix M̃ ∈ CD×d such that the following
holds with probability at least 1− 1

C′·ln2(d)·ln3(ln d) : the proposed

algorithm will recover an x̃ ∈ Cd with

min
θ∈[0,2π)

∥∥∥x− eiθx̃∥∥∥2
2
≤ C ′′(d ln d)2 ln3(ln d)‖n‖2

when given arbitrarily noisy input measurements
b = |Mx|2 + n ∈ RD. Here D can be chosen to be
O(d · ln2(d) · ln3 (ln d)). Furthermore, the algorithm will run in
O(d · ln3(d) · ln3 (ln d))-time.

aHerein C,C′, C′′ ∈ R+ are all fixed and absolute constants.
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Efficiency

101 102 103 104 105

Problem Size, d

10!3

10!2

10!1

100

101

102

103
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T
im
e
(i
n
se
cs
.)

Execution Time (D = 7d measurements)

PhaseLift
Alternating Projections
Wirtinger Flow (CDP)
BlockPR

O(d3)

O(d log d)

• iid Complex Gaussian
test signal

• Averaged over 100 trials

• Simulations performed in
Matlab on a laptop
computer with 4GB RAM
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Robustness

Noise Level in SNR (dB)
20 30 40 50 60

R
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B
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-10

Robustness to Additive Noise, d = 64, D = 7d

PhaseLift
Gerchberg-Saxton
Block Circ. (D = 7d)
Block Circ. (D = 15d)

• iid complex Gaussian
signal

• d = 64

• 7d measurements

• Deterministic (windowed
Fourier-like)
measurements
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Robustness

Noise Level in SNR (dB)
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0

Robustness to Noise (Random Masks), d = 2048

D = 3d log d
D = 4d log d
D = 6d log d

• iid complex Gaussian
signal

• d = 2048

• Not feasible with
SDP-based methods such
as PhaseLift on a laptop
in Matlab

• Random measurements
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In Summary. . .

• BlockPR allows for essentially linear-time robust phase
retrieval from local correlation measurement constructions.

• Deterministic measurements for flat vectors.

• First known global robust recovery guarantee for phase
retrieval from local correlation (ptychographic) measurements.

Current and Future Directions

• (Sublinear-time) compressive phase retrieval

• Improved angular synchronization frameworks

• Extensions to 2D and Ptychography
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Questions?
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Appendix: Condition Number Proof Sketch
(Step 1) M ′ is block-circulant and therefore admits a unitary
decomposition

U∗2δ−1M
′U2δ−1 = J = blockdiag (J1, J2, . . . , Jd),

where J1, . . . , Jd ∈ C(2δ−1)×(2δ−1) are defined as

Jk :=

δ∑
l=1

M ′l · e
2πi·(k−1)·(l−1)

d

and Uα ∈ Cαd×αd are unitary block Fourier matrices defined by

Uα :=
1√
d



Iα Iα . . . Iα

Iα Iαe
2πi
d . . . Iαe

2πi·(d−1)
d

. . .

Iα Iαe
2πi·(d−2)

d . . . Iαe
2πi·(d−2)·(d−1)

d

Iα Iαe
2πi·(d−1)

d . . . Iαe
2πi·(d−1)·(d−1)

d

 .
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Appendix: Condition Number Proof Sketch

(Step 2) For the prescribed structured measurements, evaluating
Jk yields

Jk = F2δ−1


sk,1 0 . . . 0
0 sk,2 0 . . .

0 0
. . . 0

0 . . . 0 sk,2δ−1

 ,

where Fα ∈ Cα×α is the unitary α× α discrete Fourier transform

matrix, and {sk,j}
j∈{1,2,...,2δ−1}
k∈{1,2,...,d} can be explicitly evaluated.

Since F2δ−1 is unitary,

min
j∈[2δ−1]

|sk,j | ≤ σ2δ−1 (Jk) ≤ σ1 (Jk) ≤ max
j∈[2δ−1]

|sk,j | .
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Appendix: Condition Number Proof Sketch

(Step 3) Bound the maximum and minimum values of |sk,j | from
above and below, respectively, over all k ∈ {1, 2, . . . , d} and
j ∈ {1, 2, . . . , 2δ − 1}. Minimize upper bound w.r.t. a parameter.

(Step 4) Final result obtained using

κ
(
M ′
)
=
σ1 (M

′)

σD (M ′)
=

σ1 (J)

σD (J)
≤

maxk∈{1,2,...,d} σ1 (Jk)

mink∈{1,2,...,d} σ2δ−1 (Jk)
.
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Appendix: Flattening “Non-Sparse” Vectors

• Recall: Due to compact support of our masks, only
⌊
δ−3
2

⌋
-flat

vectors can be recovered

• Arbitrary vectors can be ”flattened” by multiplication with a
random unitary matrix such as W = PFB, where
• P ∈ {0, 1}d×d is a permutation matrix selected uniformly at

random from the set of all d× d permutation matrices

• F is the unitary d× d discrete Fourier transform matrix

• B ∈ {−1, 1}d×d is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal
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Some Details

Definition

Let m ∈ {1, 2, . . . , d}. A vector x ∈ Cd will be called m-flat if its
entries can be partitioned into at least

⌊
d
m

⌋
contiguous blocks such

that:

1 Every block contains either m or m+ 1 entries,

2 Every block contains at least one entry whose magnitude is
≥ ‖x‖2

2
√
d

, and

– The smaller m is, the flatter (and less sparse) x must be.
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Some Details

Definition

Let ε ∈ (0, 1), and S ⊂ Cd be finite. An m× d matrix A is a linear
Johnson-Lindenstrauss embedding of S into Cm if

(1− ε)‖ u− v ‖22 ≤ ‖ Au−Av ‖22 ≤ (1 + ε)‖ u− v ‖22

holds ∀u,v ∈ S ∪ {0}. In this case we will say that A is a
JL(m,d,ε)-embedding of S into Cm.

JL embeddings are closely related to the Restricted Isometry
Property (RIP). A matrix with the restricted isometry property can
be used to construct a Johnson-Lindenstrauss embedding matrix.
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Some Details

• W = PFB

• For any given m ∈ {1, 2, . . . , d}, one can partition W into⌊
d
m

⌋
blocks of contiguous rows,

W =
(
W1W2 . . . Wb dmc

)T
.

• Each renormalized sub-matrix of W ,
√

d
m ·Wj is “almost” a

random sampling matrix times a random diagonal Bernoulli
matrix and behaves like a JL(m,d,ε)-embedding of our signal
x into Cm (or Cm+1).

• Each block of m consecutive entries of Wx should have
roughly the same `2-norm as one another.
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