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The Phase Retrieval Problem

find! xeC? given |Mx|°+n=becRP,
where
e b € R denotes the phaseless (or magnitude-only)
measurements,

e M € ©CP*d s 3 measurement matrix associated with these
measurements, and

e n € RP is measurement noise.

Let A: RP — ©9 denote the recovery method. The phase
retrieval problem involves designing measurement matrix and
recovery method pairs, (M, A).

(upto a global phase offset)
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Motivating Applications
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Test pattern

Pinhols Focusing lens

*X

From Huang, Xiaojing, et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

Laser source

&
o= M=

fast scan axis

The Phase Retrieval problem arises in many molecular imaging
modalities, including

e X-ray crystallography
e Ptychography

Other applications can be found in optics, astronomy and speech
processing.



Existing Computational Approaches

o Alternating projection methods
[Fienup, 1978], [Fannjiang and Liao, 2012], ...

e Methods based on semidefinite programming
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,
2012], ...

e Others
e Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

o (Stochastic) gradient descent [Candes et al., 2014]

...and variants for sparse and/or structured signal models.
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Existing Computational Approaches

o Alternating projection methods — No recovery guarantees
[Fienup, 1978], [Fannjiang and Liao, 2012], ...

e Methods based on semidefinite programming — Expensive
PhaseLift [Candes et al., 2012], PhaseCut [Waldspurger et al.,
2012], ...

e Others
e Frame-theoretic, graph based algorithms [Alexeev et al., 2014]

o (Stochastic) gradient descent [Candes et al., 2014]

Most methods require random measurement constructions.
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Today. ..

e We discuss a recently introduced essentially linear-time phase
retrieval algorithm based on (deterministic?) local correlation
measurement constructions.

o We provide rigorous theoretical recovery guarantees and
present numerical results showing the accuracy, efficiency and
robustness of the method.

2for a large class of real-world signals
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Outline

2 BlockPR: Fast Phase Retrieval from Local Correlation
Measurements
Measurement Constructions
Solving for Phase Differences
Angular Synchronization



Key Components

1 Local Measurements: Each measurement provides
information about some /ocal region of x.

Constraint on x: We require x to be “flat”.

(At most § consecutive entries in x with magnitude < %)



Key Components

1 Local Measurements: Each measurement provides
information about some /ocal region of x.

2 Local Lifting: Use compactly supported masks and
correlation measurements to obtain phase difference estimates.

2 solve «
linear system J |7—k mod d<§|
e m; is a mask or window function with § non-zero entries.

e z;x} provides (scaled) phase difference between x; and zj.

|Corr(m;, x)
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Key Components

1 Local Measurements: Each measurement provides
information about some /ocal region of x.

2 Local Lifting: Use compactly supported masks and
correlation measurements to obtain phase difference estimates.
2 solve *
| ————— {zjap ),
linear system J li—k  mod d<d|
e m; is a mask or window function with § non-zero entries.

e z;x} provides (scaled) phase difference between x; and zj.

|Corr(m;, x)

3 Angular Synchronization: Use the phase differences to
obtain the phases of the unknown signal.

{ *} angular }d
TixLH PE S
I7kT]i—k  mod d<d| synchronization 7=l
Constraint on x: We require x to be “flat”.

||X||2)

(At most 0 consecutive entries in x with magnitude < a



Measurement Constructions

Aperture Sample Detector

Source @

Adapted from Huang et al. “Fly-scan ptychography.” Scientific Reports 5 (2015).

e We consider measurements motivated by Ptychographic
molecular imaging.

e Measurements are local; the full reconstruction is obtained by
imaging shifts of the specimen.

6
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Model Problem

Recover an unknown vector x € C* from noiseless measurements
2
y = |Mx|",

where y € R'? and M € C'2*4 has the following structure:

(m;)1 (my)2 O 0
My
B 1 o0 (m;); (m;) 0
M = %2 , M= 0 0 (ml)? (my)9
3 (my)s 0 0 (my)

Here, my 53y € C* are masks with local support (with 6 =2
non-zero entries).

~
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Local Correlation Measurements

These correspond to local correlation measurements

2
. (6,0) €{1,2,3} x {1,2,3,4}

0=2

> (M) wigha
k=1
5 5

(YE)Z‘ =

= D (my)j (M) migjo1 @ gy = Y (M) T T

jk=1 jk=1
This is a linear system for the phase differences {z;xz; }!
Note: the masks my; 5 3, (which are related to the aperture

transmission function of the imaging system) are known - either by
design or through calibration.
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Solving for Phase Differences

Writing out the correlation sum, we obtain the linear system

M'z =b,
where

z=[|m|? wixy vor] [0’ worl mywy |wf wsal @l vl vl zlxﬂT,

(my)11 (mi)ip (ml)QIE:(ml)‘ZZ 0 0! 0
(mz)11 (m2)12 (m2)1ti(ma)ao 0 0, 0
(my)1a_ (mg)s (Ma)alimyoz 0 00 0

0 0 0 (myp)11 (mp)ip (mi)a1 (my)oo

0 0 0 (mg)11 (mg2)1o (mg)a; (ma)22

M= 0 0 0 (m3)11 (mg)1o (mz)a1 (m3)22

0 0 0 0 0 0 (mi)i,

0 0 0 0 0 0 (ma)is

0 0 0 0 0 0 (m3)is
(m)ss 0 0 0 0 0 0
(m2)2s 0 0 0 0 0 0
| (m3)z,2 0 0 0 0 0 0

oo o oo
oo o oo

0 (
(m1)12 (my)2;
(m2)12 (m2)2;1
(m3)12 (m3)2:

0 0

0 0

0 0

o oo oo
o oo oo

o oo
o oo




Back to our Example ...

T
[|21|? 123 wox |wo|? woah wsay |ws]? waw] auah |xal® wax} x12f]
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Back to our Example ...

T
[\:L'llz 117 2ot |wo|? woxk wawh |ws|? wawh maxh |24|? T4TT :1:11'2‘1]

| (re-arrange)

lz1)? a2} 0 r1x
* 2 \>0<‘~\~
-2 |x2|* vt “0~*\ (20 — 1 entries in band)
0 TS T3TH |23 T3Ty "~
47} 0~~~ 2473 |z4)?
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Back to our Example ...

T
[\:L'llz 117 2ot |wo|? woxk wawh |ws|? wawh maxh |24|? T4TT :1:11'2‘1]

| (re-arrange)

|z1)? J:lJé 0. r1x
* K~ ol
-2 |x2|* vt “0~*\ (20 — 1 entries in band)
0 TS T3TH |23 T3Ty "~
47} 0~~~ 2473 |z4)?

| (normalize)

1 el(@1—¢2) 0 PLICR Y
el(¢2—¢1) 1 el(P2—3) 0

0 61'1(6‘)3*(!)2) 1 e1'1((1’5.3*@5/1)
el(Pa—a1) 0 el(Pa—93) 1
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Back to our Example ...

T
[\:L'llz 117 2ot |wo|? woxk wawh |ws|? wawh maxh |24|? T4TT :1:11'2‘1]

| (re-arrange)

|z1)? J:lJé 0. r1x
* K~ ol
-2 |x2|* vt “0~*\ (20 — 1 entries in band)
0 TS T3TH |23 T3Ty "~
47} 0~~~ 2473 |z4)?

| (normalize)

1 el(@1—¢2) 0 PLICR Y
el(¢2—¢1) 1 el(P2—3) 0

0 61'1(6‘)3*(!)2) 1 e1'1((1’5.3*@5/1)
el(Pa—a1) 0 el(Pa—93) 1

| (angular synchronization)

1,02, 3, P4
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Back to our Example ...
‘ T
[\:L'llz T1x5 Ty |9 |2 Toxy T3Th |z3|? w32} T4 |4 |? a2} :1:11'2‘1]

| (re-arrange)

|z1)? £1L§ 0. r1x
* K~ ol
-2 |x2|* r213 “0~\ (26 — 1 entries in band)
0~~~ 2375 |3 raxy T~
47} 0~~~ 2473 |z4)?

| (normalize)

1 oi(d1—02) 0 ei(P1—4)
el(¢2—¢1) 1 el(P2—3) 0

0 61'1(6‘)3*(3)2) 1 e1'1((;’5:3*(;5/1)
el(Pa—a1) 0 el(Pa—93) 1

| (angular synchronization)

b1, 92, 03, P4
(Signal Reconstruction)  [|zq|e?¥t  |agel?2  |zslel \x4]eﬁ¢4]T
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The Angular Synchronization Problem

The Angular Synchronization Problem

Estimate d unknown angles ¢1, ¢2, ..., ¢4 € [0,27) from noisy and
possibly incomplete measurements of their differences,

¢i,j = d)l — qu mod 27.

e Several possible approaches: eigenvector methods,
semidefinite programming . ..

e Today: Greedy angular synchronization

11/23



Greedy Angular Synchronization

1 Set the largest magnitude component to have zero phase
angle; i.e.,

arg(z;) =0, Jj= argmax |2; |2

2 Use this entry to set the phase angles of its § neighboring
entries; i.e.,

arg(xy) = arg(z;) — ¢k, |7 — k mod d| < 0.

3 Use the next largest magnitude component from these §
entries and repeat the process.

12 /23



Greedy Angular Synchronization

‘ T
[\w1]2 x1x% Tox] |2 |2 Toxy T3Th |z3|? w3} T4 |4 |? T4} xl;l;j]

| (re-arrange)

z1[? mas L0 T17]
* 2 RN -
“tari fwlt o weas 0 o5 entries in band)
0 = ~~_ 2375 |3 T3xy "~
47} 0~~~ myz} |z4)?
| (normalize)
I (@1 — ¢2) 1
———
1 e $1,2 0 6ﬁ(§b17(/)4)
ci(d2—d1) 1 ci(d2—d3) 0
0 ei(d3—¢2) 1 el(B3—¢a)
_eﬁ(¢4—¢1) 0 ei(Pa—a3) 1 |
| (angular synchronization)
¢1 ) ¢27 ?3, ¢4
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Greedy Angular Synchronization

Applying this to our example problem. ..

e Assume, without loss of generality, that
‘371’ > |.CCZ’, 1 € {2,3,4}.

1 We start by setting® arg(z1) = 0.
2 We may now set the phase of x9 and x4 using the estimated
phase differences ¢1 2 and ¢1 4 respectively; i.e.,

arg(r2) = arg(w1) — ¢1,2, arg(zry) = arg(w1) — P14

3 Similarly, we next set arg(z3) = arg(z2) — ¢2,3, thereby
recovering all of the entries’ unknown phases.

3Recall that we can only recover x up to an unknown global phase factor

which, in this case, will be the true phase of x;.
12/23



Outline

3 Theoretical Guarantees



Block-Circulant Matrix: Condition Number Bounds
Theorem (lwen, V., Wang 2015)

Choose entries of the measurement mask (m;) as follows:

e e WH/H, 1< a := max {4 ey
(my), =< V25-1 =
0, (>4 1=1,2, N

Then, the resulting system matrix for the phase differences, M’,
has condition number

x(M') < max {144@2 94 (6 — 1)2} :

e Deterministic (windowed DFT-type) measurement masks!
e 0 is typically chosen to be clog, d with ¢ small (2-3).

e Extensions: oversampling, random masks . ...



Recovery Guarantee — Non-Sparse (“Flat”) Signals

Theorem (lwen, V., Wang 2015)

There exist fixed universal constants C,C’ € R" such that
following holds: Let M € CP*? be defined as in the previous slide,
and suppose that x € C% is non-sparse® with d > 2 and

|x||2 > C (6§ — 1)d? ||n||2. Then, the proposed algorithm is
guaranteed to recover an x € C% with

min

16.g 2 ! 72
x —ex|| < C'd*(6 —1)|n||2
0€[0,27) 2

when given arbitrarily noisy input measurements
b = |]\4X\2 +n € RP. Furthermore, the algorithm requires just
O(6 - dlog d) operations for this choice of M € CP*9,

“does not have more than | (6 — 3)/2] consecutive zeros or small entries; see
preprint for details.



Recovery Guarantee - Arbitrary Signals

Theorem (lwen, V., Wang 2015)

Let x € C? with d sufficiently large have
Ix]13 > C (d Ind)?n®(Ind) [n||2.* Then, one can select a
random measurement matrix M € CP*d such that the following

holds with probability at least 1 — m the proposed

algorithm will recover an X € C¢ with

min
0€[0,27)

]x—@waQ < 0"(d Ind)?In®(lnd)||n}

when given arbitrarily noisy input measurements

b = [Mx|* +n € RP. Here D can be chosen to be

O(d - 1n*(d) - n3 (Ind)). Furthermore, the algorithm will run in
O(d - n3(d) - In® (In d))-time.

aHerein C,C’,C"” € R™ are all fixed and absolute constants.



Outline

4 Numerical Simulations



Efficiency

Execution Time (D = 7d measurements)
T T T

10*
10% - 4
~ e iid Complex Gaussian
5 10 ] test signal
£ ol | Averaged over 100 trials
£
£ e Simulations performed in
ERUR ]
E Matlab on a laptop
o T computer with 4GB RAM
E —e— Alternating Projections| 3
- B - Wirtinger Flow (CDP)
—6— BlockPR
103 - - L
10t 10? 10° 10* 10°

Problem Size, d

16 /23



Robustness

Reconstruction Error (dB)

Robustness to Additive Noise, d = 64, D = 7d

-20
-30
-40
-50

-60 -

- 6 - PhaseLift
--&-- Gerchberg-Saxton
—+—Block Circ. (D = 7d)
—e—Block Circ. (D = 15d)

20 30 40 50 60
Noise Level in SNR (dB)

iid complex Gaussian
signal

d=64
7d measurements

Deterministic (windowed
Fourier-like)
measurements
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Robustness

Robustness to Noise (Random Masks), d = 2048
0 T T T

—o—D = 3dlogd
—a—D =4dlogd
—%—D = 6dlogd

10 F

e iid complex Gaussian

| signal

o d =2048

e Not feasible with

1 SDP-based methods such

as PhaseLift on a laptop
in Matlab

e Random measurements

20 +

-30 +

240 F

-50 +

Reconstruction Error (dB)

-60 4

20 2 2 50 0
Noise Level in SNR (dB)
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In Summary. ..

e BlockPR allows for essentially linear-time robust phase
retrieval from local correlation measurement constructions.

e Deterministic measurements for flat vectors.

o First known global robust recovery guarantee for phase
retrieval from local correlation (ptychographic) measurements.

Current and Future Directions

e (Sublinear-time) compressive phase retrieval
e Improved angular synchronization frameworks

e Extensions to 2D and Ptychography

18/23
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Code: https://bitbucket.org/charms/blockpr

Related Work
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Code: https://bitbucket.org/charms/sparsepr

19/23



Questions?
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Appendix: Condition Number Proof Sketch

(Step 1) M’ is block-circulant and therefore admits a unitary
decomposition

Ujs_M'Uss_1 = J = blockdiag (J1, Jo, ..., Ju),

where Ji,. .., J; € C20-1Dx(20-1) 5re defined as
2mi-(k—1)-(I-1) 1) (1-1)
Jk- — ZMZ

and U, € €C*¥*4 are unitary block Fourier matrices defined by

1, 1, R N
27l 2mi-(d—1)

I, I.,e d . T, 4

1
Uy = —
\/& 27 (d—2) 27i-(d—2)-(d—1)

I, I,e 4 ... Ie d
27i-(d—1) 27i-(d—1)-(d—1)

I, I,e  d o Iae d
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Appendix: Condition Number Proof Sketch

(Step 2) For the prescribed structured measurements, evaluating
Jy, yields

Sk,1 0 ... 0
0 Sk,2 0 “.
Jp = Fas . )
0 0 0
0 N 0 Sk725_1

where F,, € C**? is the unitary o X « discrete Fourier transform

matrix, and {skj}iﬁzzg_l} can be explicitly evaluated.

Since Fys_1 is unitary,

min |s <o Ji) <o1(Jg) < max |s
j2hin |sk,j| < 0251 (Jk) < o1 (Jk) e 1]! kol -
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Appendix: Condition Number Proof Sketch

(Step 3) Bound the maximum and minimum values of |s, ;| from

above and below, respectively, over all k € {1,2,...,d} and
j€{1,2,...,25 — 1}. Minimize upper bound w.r.t. a parameter.

(Step 4) Final result obtained using

K (M/) _ g1 (M/) _ o1 (J) < maxke{1’27”'7d} o1 (Jk)
op (M) op(J) T mingeqro.. 4y 0251 (Je)
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Appendix: Flattening “Non-Sparse” Vectors

o Recall: Due to compact support of our masks, only L553J—f|at
vectors can be recovered

o Arbitrary vectors can be "flattened” by multiplication with a
random unitary matrix such as W = PF' B, where

e P €{0,1}%%4 is a permutation matrix selected uniformly at
random from the set of all d x d permutation matrices

e [ is the unitary d x d discrete Fourier transform matrix

e B e {-1,1}9*4 is a random diagonal matrix with i.i.d.
symmetric Bernoulli entries on its diagonal



Some Details

Definition
Let m € {1,2,...,d}. A vector x € C* will be called m-flat if its

entries can be partitioned into at least | L | contiguous blocks such
that:

1 Every block contains either m or m + 1 entries,
2 Every block contains at least one entry whose magnitude is

— The smaller m is, the flatter (and less sparse) x must be.
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Some Details

Definition
Let e € (0,1), and S € C? be finite. An'm x d matrix A is a linear
Johnson-Lindenstrauss embedding of S into C™ if

l-fu-v[i<|Au-Av[F<(1+e)u—v]3
holds Yu,v € SU{0}. In this case we will say that A is a

JL(m,d,e)-embedding of S into C™.

JL embeddings are closely related to the Restricted Isometry
Property (RIP). A matrix with the restricted isometry property can
be used to construct a Johnson-Lindenstrauss embedding matrix.



Some Details

e W =PFB

e For any given m € {1,2,...,d}, one can partition W into
| 4] blocks of contiguous rows,

W:(Wlm...wLiJ )T,

e Each renormalized sub-matrix of W, \/% -Wj is “almost” a
random sampling matrix times a random diagonal Bernoulli

matrix and behaves like a JL(m,d,e)-embedding of our signal
x into C™ (or C™+1).

e Each block of m consecutive entries of Wx should have
roughly the same £s-norm as one another.
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