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An Illustration

I Let f be a compactly supported piecewise-smooth function on
the real line. For example,

f(x) =


3
2 −3π

4 ≤ x < −π
2

7
4 − x

2 + sin(x− 1
4) −π

4 ≤ x < π
8

11
4 x− 5 3π

8 ≤ x < −3π
4

0 else

I Given the first few Fourier coefficients,

f̂(k) =
1

2π

∫ π

−π
f(x)e−ikxdx, |k| ≤ N,

let us compute a partial sum Fourier reconstruction ...
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Figure: Reconstruction using 20 Fourier Coefficients
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An Illustration

I Given f̂(k), how do we compute an approximation of the
singular support of f?

[f ](x) =



3
2 x = −3π

4
−3

2 x = −π
2

14+π
8 − sin

(
π+1

4

)
≈ 1.28 x = −π

4
sin
(

2−π
8

)
− 28−π

16 ≈ −1.70 x = π
8

33π
32 − 5 ≈ −1.76 x = 3π

8
5− 33π

16 ≈ −1.48 x = 3π
4

0 elsewhere

where
[f ](x) := f(x+)− f(x−).
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An Illustration
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Figure: Reconstruction using 20 Fourier Coefficients and Edge
Information
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Motivating Application – Magnetic Resonance Imaging

I Physics of MRI dictates
that the MR scanner
collect samples of the
Fourier transform of the
scan image.

I In order to minimize scan
time and improve patient
comfort, we want to
collect as few samples as
possible.
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Motivating Application – Magnetic Resonance Imaging

I Physics of MRI dictates
that the MR scanner
collect samples of the
Fourier transform of the
scan image.

I In order to minimize scan
time and improve patient
comfort, we want to
collect as few samples as
possible.

I Piecewise smooth nature
of scan images degrades
accuracy of many
reconstruction schemes.
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Concentration Method (Gelb, Tadmor)

I Approximate the singular support of f using the generalized
conjugate partial Fourier sum

SσN [f ](x) = i

N∑
k=−N

f̂(k) sgn(k)σ

( |k|
N

)
eikx

I σk,N (η) = σ( |k|N ) are known as concentration factors which
are required to satisfy certain admissibility conditions.

I Under these conditions,

SσN [f ](x) = [f ](x) +O(ε), ε = ε(N) > 0 being small

i.e., SσN [f ] concentrates at the singular support of f .
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Concentration Factors

Factor Expression

Trigonometric σT (η) =
π sin(αη)

Si(α)

Si(α) =

∫ α

0

sin(x)

x
dx

Polynomial σP (η) = −p π ηp
p is the order of the factor

Exponential σE(η) = Cη exp
[

1
αη (η−1)

]
C - normalizing constant

α - order
C = π∫ 1− 1

N
1
N

exp
[

1
α τ (τ−1)

]
dτ

Table: Examples of concentration factors
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Envelopes of Factors in k-space
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Designing New Concentration Factors

SσN [f ](x) = ([f ]∗Dσ,N
0 )(x)+([f ′]∗Dσ,N

1 )(x)+([f ′′]∗Dσ,N
2 )(x)+...

where

Dσ,N
0 (x) := SσN [r](x) =

1

2π

∑
0<|k|≤N

σ
(
|k|
N

)
|k| eikx.

I Dσ,N
0 is known as the characteristic response and is obtained

by applying the concentration method to a ramp function.

I Dσ,N
0 (and consequently σ) completely defines the

characteristics of the jump approximation.
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Designing New Concentration Factors

min
σ

‖Dσ,N
0 ‖2

subject to Dσ,N
0

∣∣∣
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Designing New Concentration Factors

min
σ

‖Dσ,N
0 ‖1

subject to Dσ,N
0

∣∣∣
x=0

= 1∣∣∣Dσ,N
0 (x)

∣∣∣
|x|≥.35

≤ 10−3

σ ≥ 0, σ(1) = 0, σ(K) = 0
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Some Examples
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(e) Trigonometric Factor

−3 −2 −1 0 1 2 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

x

f(
x)

Jump Approximation − Exponential Factor

 

 
f
S

N
[f]

(f) Exponential Factor

Figure: Jump Function Approximation, N = 128
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Building an Edge Detector

I Exploit features of the characteristic response Dσ,N
0 such as

mainlobe width and sidelobe structure.

I Formulate the problem in a statistical detection theoretic
framework so that its performance can be quantified in the
presence of noise.

I Resulting edge detector is a matched filter of the form

→ Etrue : MTC−1
V Y > γ

where Y is the vector of (possibly noisy) measurements from
SσN [f ], M is a template response, CV is the covariance matrix
and γ is a threshold.
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Statistical Formulation of the Edge Detector
I Assume zero-mean, additive complex white Gaussian noise

ĝ(k) = f̂(k) + v̂(k) v̂(k) ∼ N [0, ρ2]

I Linearity of SN [f ], i.e., SσN [g](x) = SσN [f ](x) + SσN [v](x)
I Mean: E [SσN [g](x) ] = SσN [f ](x)

I Covariance: (Cv)xa,xbp,q = ρ2
∑
l

σp (|l|/N)σq (|l|/N) eil(xa−xb)

I The detection problem is

H0 : Y = V ∼ N [0, CV]

H1 : Y = α1 ·M + V ∼ N [αM,CV]

I Solve using Neyman-Pearson Lemma

→ H1 :
Pr(Y|H1)

Pr(Y|H0)
> γ

I Detector is a generalized matched filter
→ H1 : MTC−1

V Y > γ
I False alarm mitigation using local maximum of statistic.
1α is the jump value. 8 / 21



Edge Detector Examples
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(a) Noisy Fourier Reconstruction
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(b) Jump Detection

Figure: Edge Detection with Noisy Data, N = 50, ρ = 0.02, 5−point
Trigonometric detector
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Edge Detector Examples
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(a) Noisy Fourier Reconstruction
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(b) Jump Detection

Figure: Edge Detection with Noisy Data, N = 50, ρ = 0.02, 5−point
Trigonometric detector
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Two Dimensional Extensions
For images, apply the method to each dimension separately

SσN [f ](x(ȳ)) = i

N∑
l=−N

sgn(l)σ

( |l|
N

) N∑
k=−N

f̂k,l e
i(kx+lȳ)

(overbar represents the dimension held constant.)
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Two Dimensional Extensions
For images, apply the method to each dimension separately

SσN [f ](x(ȳ)) = i

N∑
l=−N

sgn(l)σ

( |l|
N

) N∑
k=−N

f̂k,l e
i(kx+lȳ)

(overbar represents the dimension held constant.)
Edge Map

10 / 21



Iterative Formulation (with Wolfgang Stefan)

Recall,
SσN [f ](x) ≈ ([f ] ∗Dσ,N

0 )(x)

where

I SσN [f ] is the jump approximation computed using the
concentration method and concentration factor σ(η).

I Dσ,N
0 is the template waveform generated by concentration

factor σ(η).

Problem Formulation

min
p

‖F {Wp}ωk − f̃ωk ‖
2
2 + λ‖ p ‖1

where W is a (banded) Toeplitz matrix of samples of Dσ,N
0 and

f̃ωk := f̂(ωk) · i · sgn(ωk) · σ
(
|ωk|
N

)
.
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Representative Examples
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Figure: Jump detection – Iterative Formulation (N = 40, Exponential
factor)
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Representative Examples
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Figure: Jump detection – Iterative Formulation (N = 128, Exponential
factor, Gaussian Blur)

12 / 21



Outline

Introduction

Edge Detection
Concentration Method
Concentration Factor Design
Statistical Edge Detectors
Iterative Formulations

Incorporating Edge Information in the Reconstruction
Relating Fourier Data to Edge Information
Applications to Non-harmonic Fourier Reconstruction
Spectral Re-projection

12 / 21



Relating Fourier Data to Edge Information

Let f be periodic in [−π, π) with a single jump at x = ζ.

f̂(k) =
1

2π

∫ ζ−

−π
f(x)e−ikxdx+

1

2π

∫ π

ζ+
f(x)e−ikxdx, k 6= 0

Integrating by parts and using

[f ](x) := f(x+)− f(x−),

we get

f̂(k) =
1

2π

(
[f ](ζ)

ik
+

[f ′](ζ)

(ik)2
+

[f ′′](ζ)

(ik)3
+ ...

)
e−ikζ , k 6= 0

This is a relation between global Fourier measurements and local
features (edges).
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Fourier Coefficient Estimates

I Synthesize additional Fourier coefficients using

f̂ est(k) =

np∑
p=1

[f ](ζp)

2πik
e−ikζp +O

(
1

k2

)
, k 6= 0,

(np is the number of jumps in the function)
i.e., improve effective resolution of a reconstruction without
collecting any additional data.

I High frequency coefficients may be synthesized at high SNRs.

I Applications in non-harmonic Fourier reconstruction, where
k-space region of low sampling density can contain large
re-gridding errors.
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Improving the Effective Resolution of Fourier
Reconstructions Fourier Reconstruction

Figure: Fourier Reconstruction of the Shepp-Logan Phantom using
N = 100 Fourier Modes 15 / 21



Improving the Effective Resolution of Fourier
Reconstructions Fourier Reconstruction

Figure: Same Reconstruction with a further N = 100 Modes estimated
using edge information 15 / 21



Applications to Non-harmonic Fourier Reconstruction
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Figure: Non-harmonic Fourier Reconstruction (Convolution Gridding,
N = 128)
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Applications to Non-harmonic Fourier Reconstruction
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Figure: Reconstruction of the same test function using edge estimates
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Edge Augmented Partial Fourier Sums

Sedge

N f(x) =
∑
|k|≤N

f̂(k)eikx +
∑
|k|>N

f̂ est(k)eikx

=
∑
|k|≤N

[
f̂(k)− f̂ est(k)

]
eikx +

∞∑
k=−∞

f̂ est(k)eikx

=
∑
|k|≤N

[
f̂(k)− f̂ est(k)

]
eikx +

np∑
p=0

[f ](ζp)

π

∞∑
k=1

sin[k(x− ζp)]
k

=
∑
|k|≤N

[
f̂(k)− f̂ est(k)

]
eikx +

np∑
p=0

[f ](ζp) r(x− ζp)

where

r(x) =
π − x

2π
+

1

2
Floor

[ x
2π

]
is the unit ramp (sawtooth) function.
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Some Numerical Results

−3 −2 −1 0 1 2 3
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

x

f(
x)

 

 

f
S

N
f

S
N
edgef

(a) Physical Reconstruction
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(b) Log Reconstruction Error

Figure: Function Reconstruction, N = 32
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Figure: Function Reconstruction, N = 32
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Spectral Re-projection

I Spectral reprojection schemes were formulated to resolve the
Gibbs phenomenon. They involve reconstructing the function
using an alternate basis, Ψ (known as a Gibbs complementary
basis).

I Reconstruction is performed using the rapidly converging
series

f(x) ≈
m∑
l=0

clψl(x), where cl =
〈SNf, ψl〉w
‖ψl‖2w

I Reconstruction is performed in each smooth interval. Hence,
we require jump discontinuity locations

I High frequency modes of f have exponentially small
contributions on the low modes in the new basis
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Gegenbauer Reconstruction – Results
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Figure: Gegenbauer reconstruction

I Filtered Fourier reconstruction uses 256 coefficients

I Gegenbauer reconstruction uses 64 coefficients

I Parameters in Gegenbauer Reconstruction - m = 2, λ = 2

20 / 21



Summary and Future Directions

I The concentration method provides a flexible and robust
framework for extracting edge information from Fourier data.

I Ongoing research is directed at developing truly
two-dimensional formulations of the concentration method.

I Edge information extracted by this method can be used to
improve reconstruction quality

I Can be used to improve re-gridding performance in
non-harmonic reconstructions

I Can be used to synthesize high-mode Fourier coefficients to
improve the effective resolution of scans

I Can be used in spectral re-projection schemes to eliminate the
Gibbs phenomenon.

I Applications in other fields for edge augmented Fourier
approximations include study of wave propagation in layered
or discontinuous media.
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