Incorporating Edge Information in Fourier Reconstruction

with Applications to Magnetic Resonance Imaging

Aditya Viswanathan aditya.v@caltech.edu

California Intitute of Technology

MBI Workshop on Mathematical Challenges in Biomolecular/Biomedical Imaging and Visualization Feb 19 2013

Joint work with

Research supported in part by National Science Foundation grants CNS 0324957, DMS 0510813 and DMS 0652833 (FRG).

► Let f be a compactly supported piecewise-smooth function on the real line. For example,

$$f(x) = \begin{cases} \frac{3}{2} & -\frac{3\pi}{4} \le x < -\frac{\pi}{2} \\ \frac{7}{4} - \frac{x}{2} + \sin(x - \frac{1}{4}) & -\frac{\pi}{4} \le x < \frac{\pi}{8} \\ \frac{11}{4}x - 5 & \frac{3\pi}{8} \le x < -\frac{3\pi}{4} \\ 0 & \text{else} \end{cases}$$

Given the first few Fourier coefficients,

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(x) e^{-ikx} dx, \quad |k| \le N,$$

let us compute a partial sum Fourier reconstruction ...

Figure: Reconstruction using 20 Fourier Coefficients

► Given f̂(k), how do we compute an approximation of the singular support of f?

$$[f](x) = \begin{cases} \frac{3}{2} & x = -\frac{3\pi}{4} \\ -\frac{3}{2} & x = -\frac{\pi}{2} \\ \frac{14+\pi}{8} - \sin\left(\frac{\pi+1}{4}\right) \approx 1.28 & x = -\frac{\pi}{4} \\ \sin\left(\frac{2-\pi}{8}\right) - \frac{28-\pi}{16} \approx -1.70 & x = \frac{\pi}{8} \\ \frac{33\pi}{32} - 5 \approx -1.76 & x = \frac{3\pi}{8} \\ 5 - \frac{33\pi}{16} \approx -1.48 & x = \frac{3\pi}{4} \\ 0 & \text{elsewhere} \end{cases}$$

where

$$[f](x) := f(x^{+}) - f(x^{-}).$$

Figure: Reconstruction using 20 Fourier Coefficients and Edge Information

Motivating Application – Magnetic Resonance Imaging

- Physics of MRI dictates that the MR scanner collect samples of the Fourier transform of the scan image.
- In order to minimize scan time and improve patient comfort, we want to collect as few samples as possible.

Motivating Application – Magnetic Resonance Imaging

- Physics of MRI dictates that the MR scanner collect samples of the Fourier transform of the scan image.
- In order to minimize scan time and improve patient comfort, we want to collect as few samples as possible.
- Piecewise smooth nature of scan images degrades accuracy of many reconstruction schemes.

Outline

Introduction

Edge Detection Concentration Method Concentration Factor Design Statistical Edge Detectors Iterative Formulations

Incorporating Edge Information in the Reconstruction Relating Fourier Data to Edge Information Applications to Non-harmonic Fourier Reconstruction Spectral Re-projection

Concentration Method (Gelb, Tadmor)

► Approximate the singular support of *f* using the *generalized* conjugate partial Fourier sum

$$S_N^{\sigma}[f](x) = i \sum_{k=-N}^N \hat{f}(k) \operatorname{sgn}(k) \sigma\left(\frac{|k|}{N}\right) \, e^{ikx}$$

- $\sigma_{k,N}(\eta) = \sigma(\frac{|k|}{N})$ are known as *concentration factors* which are required to satisfy certain admissibility conditions.
- Under these conditions,

 $S_N^\sigma[f](x) = [f](x) + \mathcal{O}(\epsilon), \quad \epsilon = \epsilon(N) > 0 \text{ being small}$

i.e., $S_N^{\sigma}[f]$ concentrates at the singular support of f.

Concentration Factors

Factor	Expression	
Trigonometric	$\sigma_{\pi}(n) = \frac{\pi \sin(\alpha \eta)}{1 + 1}$	4 Concentration Factors
Ingonometric	$Si(\alpha)$	3.5 Polynomial Exponential
	$Si(lpha) = \int_0^lpha rac{\sin(x)}{x} dx$	3
Polynomial	$\sigma_P(\eta) = -p \pi \eta^p$	2
	p is the order of the factor	1.5
Exponential	$\sigma_E(\eta) = C\eta \exp\left[\frac{1}{\alpha \eta (\eta - 1)}\right]$	1
	C - normalizing constant	
	lpha - order	-80 -60 -40 -20 0 20 40 60 8/ k
	$C = \frac{\pi}{\int_{\frac{1}{N}}^{1-\frac{1}{N}} \exp\left[\frac{1}{\alpha \tau (\tau-1)}\right] d\tau}$	Figure: Envelopes of Eactors in k -space

Table: Examples of concentration factors

Designing New Concentration Factors

$$S_N^{\sigma}[f](x) = ([f] * D_0^{\sigma,N})(x) + ([f'] * D_1^{\sigma,N})(x) + ([f''] * D_2^{\sigma,N})(x) + \dots$$

where

$$D_0^{\sigma,N}(x) := S_N^{\sigma}[r](x) = \frac{1}{2\pi} \sum_{0 < |k| \le N} \frac{\sigma\left(\frac{|k|}{N}\right)}{|k|} e^{ikx}.$$

- D₀^{σ,N} is known as the characteristic response and is obtained by applying the concentration method to a ramp function.
- D₀^{σ,N} (and consequently σ) completely defines the characteristics of the jump approximation.

Designing New Concentration Factors

$$\min_{\sigma} \quad \| D_0^{\sigma,N} \|_2$$
 subject to $\left. D_0^{\sigma,N} \right|_{x=0} = 1$

Designing New Concentration Factors

Some Examples

Building an Edge Detector

- ► Exploit features of the characteristic response D^{σ,N}₀ such as mainlobe width and sidelobe structure.
- ► Formulate the problem in a statistical detection theoretic framework so that its performance can be quantified in the presence of noise.
- Resulting edge detector is a matched filter of the form

$$\rightarrow \mathcal{E}_{\mathsf{true}} : M^T C_{\mathbf{V}}^{-1} \mathbf{Y} > \gamma$$

where Y is the vector of (possibly noisy) measurements from $S_N^{\sigma}[f]$, M is a template response, $C_{\mathbf{V}}$ is the covariance matrix and γ is a threshold.

Statistical Formulation of the Edge Detector

► Assume zero-mean, additive complex white Gaussian noise

$$\hat{\mathbf{g}}(k) = \hat{f}(k) + \hat{\mathbf{v}}(k) \quad \hat{\mathbf{v}}(k) \sim \mathcal{N}[0, \rho^2]$$

- ► Linearity of $S_N[f]$, i.e., $S_N^{\sigma}[g](x) = S_N^{\sigma}[f](x) + S_N^{\sigma}[\mathbf{v}](x)$
- Mean: $\mathsf{E}[S_N^{\sigma}[\mathbf{g}](x)] = S_N^{\sigma}[f](x)$
- Covariance: $(C_{\mathbf{v}})_{p,q}^{x_a,x_b} = \rho^2 \sum_{l} \sigma_p \left(|l|/N \right) \sigma_q \left(|l|/N \right) e^{il(x_a x_b)}$
- The detection problem is

$$\begin{aligned} \mathcal{H}_0: \quad \mathbf{Y} &= \mathbf{V} &\sim \mathcal{N}[0, C_{\mathbf{V}}] \\ \mathcal{H}_1: \quad \mathbf{Y} &= \alpha^1 \cdot M + \mathbf{V} &\sim \mathcal{N}[\alpha M, C_{\mathbf{V}}] \end{aligned}$$

► Solve using Neyman-Pearson Lemma

$$\rightarrow \mathcal{H}_1: \quad \frac{Pr(\mathbf{Y}|\mathcal{H}_1)}{Pr(\mathbf{Y}|\mathcal{H}_0)} > \gamma$$

- ► Detector is a generalized matched filter $\rightarrow \mathcal{H}_1: \quad M^T C_{\mathbf{V}}^{-1} \mathbf{Y} > \gamma$
- False alarm mitigation using local maximum of statistic. $^{1}\alpha$ is the jump value.

Edge Detector Examples

Figure: Edge Detection with Noisy Data, $N=50, \rho=0.02, 5-{\rm point}$ Trigonometric detector

Edge Detector Examples

Figure: Edge Detection with Noisy Data, $N=50, \rho=0.02, 5-{\rm point}$ Trigonometric detector

Two Dimensional Extensions

For images, apply the method to each dimension separately

$$S_N^{\sigma}[f](x(\bar{y})) = i \sum_{l=-N}^N \operatorname{sgn}(l) \, \sigma\left(\frac{|l|}{N}\right) \sum_{k=-N}^N \, \hat{f}_{k,l} \, e^{i(kx+l\bar{y})}$$

(overbar represents the dimension held constant.)

Two Dimensional Extensions

For images, apply the method to each dimension separately

$$S_N^{\sigma}[f](x(\bar{y})) = i \sum_{l=-N}^N \operatorname{sgn}(l) \, \sigma\left(\frac{|l|}{N}\right) \sum_{k=-N}^N \, \hat{f}_{k,l} \, e^{i(kx+l\bar{y})}$$

(overbar represents the dimension held constant.)

Iterative Formulation (with Wolfgang Stefan)

Recall,

$$S_N^{\sigma}[f](x) \approx ([f] * D_0^{\sigma,N})(x)$$

where

- ► $S_N^{\sigma}[f]$ is the jump approximation computed using the concentration method and concentration factor $\sigma(\eta)$.
- $D_0^{\sigma,N}$ is the template waveform generated by concentration factor $\sigma(\eta)$.

Problem Formulation

$$\min_{p} \quad \| \mathcal{F} \{ Wp \}_{\omega_{k}} - \tilde{f}_{\omega_{k}} \|_{2}^{2} + \lambda \| p \|_{1}$$

where W is a (banded) Toeplitz matrix of samples of $D_0^{\sigma,N}$ and $\tilde{f}_{\omega_k} := \hat{f}(\omega_k) \cdot i \cdot \operatorname{sgn}(\omega_k) \cdot \sigma\left(\frac{|\omega_k|}{N}\right)$.

Representative Examples

Figure: Jump detection – Iterative Formulation (N = 40, Exponential factor)

Representative Examples

Figure: Jump detection – Iterative Formulation (N = 128, Exponential factor, Gaussian Blur)

Outline

Introduction

Edge Detection Concentration Method Concentration Factor Design Statistical Edge Detectors Iterative Formulations

Incorporating Edge Information in the Reconstruction Relating Fourier Data to Edge Information Applications to Non-harmonic Fourier Reconstruction Spectral Re-projection

Relating Fourier Data to Edge Information

Let f be periodic in $[-\pi,\pi)$ with a single jump at $x=\zeta$.

$$\hat{f}(k) = \frac{1}{2\pi} \int_{-\pi}^{\zeta^{-}} f(x) e^{-ikx} dx + \frac{1}{2\pi} \int_{\zeta^{+}}^{\pi} f(x) e^{-ikx} dx, \quad k \neq 0$$

Integrating by parts and using

$$[f](x) := f(x^{+}) - f(x^{-}),$$

we get

$$\hat{f}(k) = \frac{1}{2\pi} \left(\frac{[f](\zeta)}{ik} + \frac{[f'](\zeta)}{(ik)^2} + \frac{[f''](\zeta)}{(ik)^3} + \dots \right) e^{-ik\zeta}, \quad k \neq 0$$

This is a relation between global Fourier measurements and local features (edges).

Fourier Coefficient Estimates

Synthesize additional Fourier coefficients using

$$\hat{f}^{\text{est}}(k) = \sum_{p=1}^{n_p} \frac{[f](\zeta_p)}{2\pi i k} e^{-ik\zeta_p} + \mathcal{O}\left(\frac{1}{k^2}\right), \quad k \neq 0,$$

 $(n_p \text{ is the number of jumps in the function})$ i.e., improve effective resolution of a reconstruction without collecting *any* additional data.

- ► High frequency coefficients may be synthesized at high SNRs.
- Applications in non-harmonic Fourier reconstruction, where k-space region of low sampling density can contain large re-gridding errors.

Improving the Effective Resolution of Fourier Reconstructions

Figure: Fourier Reconstruction of the Shepp-Logan Phantom using ${\cal N}=100$ Fourier Modes

Improving the Effective Resolution of Fourier Reconstructions

Figure: Same Reconstruction with a further ${\cal N}=100~{\rm Modes}$ estimated using edge information

Applications to Non-harmonic Fourier Reconstruction

(a) Fourier coefficients – High modes

(b) Resulting reconstruction artifacts

Figure: Non-harmonic Fourier Reconstruction (Convolution Gridding, N = 128)

Applications to Non-harmonic Fourier Reconstruction

Figure: Reconstruction of the same test function using edge estimates

Edge Augmented Partial Fourier Sums

$$\begin{split} S_N^{\text{edge}} f(x) &= \sum_{|k| \le N} \hat{f}(k) e^{ikx} + \sum_{|k| > N} \hat{f}^{\text{est}}(k) e^{ikx} \\ &= \sum_{|k| \le N} \left[\hat{f}(k) - \hat{f}^{\text{est}}(k) \right] e^{ikx} + \sum_{k=-\infty}^{\infty} \hat{f}^{\text{est}}(k) e^{ikx} \\ &= \sum_{|k| \le N} \left[\hat{f}(k) - \hat{f}^{\text{est}}(k) \right] e^{ikx} + \sum_{p=0}^{n_p} \frac{[f](\zeta_p)}{\pi} \sum_{k=1}^{\infty} \frac{\sin[k(x - \zeta_p)]}{k} \\ &= \sum_{|k| \le N} \left[\hat{f}(k) - \hat{f}^{\text{est}}(k) \right] e^{ikx} + \sum_{p=0}^{n_p} [f](\zeta_p) r(x - \zeta_p) \end{split}$$

where

$$r(x) = \frac{\pi - x}{2\pi} + \frac{1}{2}$$
 FLOOR $\left[\frac{x}{2\pi}\right]$

is the unit ramp (sawtooth) function.

Some Numerical Results

Figure: Function Reconstruction, N = 32

Some Numerical Results

Figure: Function Reconstruction, N = 32

Spectral Re-projection

- Spectral reprojection schemes were formulated to resolve the Gibbs phenomenon. They involve reconstructing the function using an alternate basis, Ψ (known as a Gibbs complementary basis).
- Reconstruction is performed using the rapidly converging series

$$f(x) \approx \sum_{l=0}^{m} c_l \psi_l(x), \quad \text{where} \quad c_l = \frac{\langle S_N f, \psi_l \rangle_w}{\|\psi_l\|_w^2}$$

- Reconstruction is performed in each smooth interval. Hence, we require jump discontinuity locations
- ► High frequency modes of f have exponentially small contributions on the low modes in the new basis

Gegenbauer Reconstruction - Results

Figure: Gegenbauer reconstruction

- \blacktriangleright Filtered Fourier reconstruction uses 256 coefficients
- ► Gegenbauer reconstruction uses 64 coefficients
- \blacktriangleright Parameters in Gegenbauer Reconstruction $m=2, \lambda=2$

Summary and Future Directions

- The concentration method provides a flexible and robust framework for extracting edge information from Fourier data.
- Ongoing research is directed at developing truly two-dimensional formulations of the concentration method.
- Edge information extracted by this method can be used to improve reconstruction quality
 - Can be used to improve re-gridding performance in non-harmonic reconstructions
 - Can be used to synthesize high-mode Fourier coefficients to improve the effective resolution of scans
 - ► Can be used in spectral re-projection schemes to eliminate the Gibbs phenomenon.
- Applications in other fields for edge augmented Fourier approximations include study of wave propagation in layered or discontinuous media.

References

Edge Detection

- 1. A. Gelb and E. Tadmor, *Detection of Edges in Spectral Data*, in Appl. Comp. Harmonic Anal., 7 (1999), pp. 101–135.
- A. Viswanathan, A. Gelb, and D. Cochran, *Iterative Design of Concentration Factors for Jump Detection*, in J. Sci. Comp., Vol. 51, pp. 631–649, June 2012.
- W. Stefan, A. Viswanathan, A. Gelb, and R. Renaut, Sparsity Enforcing Edge Detection Method for Blurred and Noisy Fourier data, in J. Sci. Comp., Vol. 50, pp. 536–556, Mar. 2012.
- A. Viswanathan, D. Cochran, A. Gelb, and D. Cates, *Detection of Signal Discontinuities from Noisy Fourier Data*, in Proc. 42nd Asilomar Conf. Sig. Sys. Comp., pp. 1705–1708, IEEE, Oct. 2008.

References

Fourier Reconstruction

- 1. D. Gottlieb and C.W. Shu, On the Gibbs phenomenon and its resolution, in SIAM Review (1997), pp. 644–668.
- A. Viswanathan, A. Gelb, D. Cochran, and R. Renaut, On Reconstruction from Non-uniform Spectral Data, in J. Sci. Comp., Vol. 45, pp. 487–513, Oct. 2010.