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Abstract—A novel phase retrieval method, motivated by pty-
chographic imaging, is proposed for the approximate recovery
of a compactly supported specimen function f : R → C from
its continuous short time Fourier transform (STFT) spectrogram
measurements. The method, partially inspired by the well known
PhaseLift [1] algorithm, is based on a lifted formulation of the
infinite dimensional problem which is then later truncated for
the sake of computation. Numerical experiments demonstrate
the promise of the proposed approach.

I. INTRODUCTION

The problem of signal recovery (up to a global phase)
from phaseless STFT measurements appears in many audio
engineering and imaging applications. Our principal moti-
vation here, however, is ptychographic imaging (see, e.g.,
[2], [3]) in the 1-D setting where a compactly supported
specimen, f : R → C, is scanned by a focused illuminating
beam g : R → C which translates across the specimen
in fixed overlapping shifts l1, . . . , lK ∈ R. At each such
shift of the beam (or, equivalently, the specimen) a phaseless
diffraction image is then sampled in bulk by a detector. Due
to the underlying physics the collected measurements are then
modeled as sampled STFT magnitude measurements of f of
the form

bk,j :=

∣∣∣∣ˆ ∞
−∞
f (t) g (t− lk) e−2πiωjtdt

∣∣∣∣2 (I.1)

for a finite set of KN shift and frequency pairs (lk, ωj) ∈
{l1, . . . , lK}×{ω1, . . . , ωN}. Our objective is to approximate
f (up to a global phase) using these bk,j measurements.

There has been a good deal of work on signal recovery
from phaseless STFT measurements in the last couple of
years in the discrete setting, where f and g are modeled
as vectors ab initio, and then recovered from discrete STFT
magnitude measurements. In this setting many related recovery
techniques have been considered including iterative methods
along the lines of Griffin and Lim [4], [5] and alternating
projections [3], graph theoretic methods for Gabor frames
based on polarization [6], [7], and semidefinite relaxation-
based methods [8], among others [9], [10], [11], [12].

Herein we will instead consider the approximate recovery
of f (as a compactly supported function) from samples of
its continuous STFT magnitude measurements bk,j as per

(I.1). Besides perhaps better matching the continuous models
considered in some applications such as ptychography, and al-
lowing one to more naturally consider approaches that utilize,
e.g., irregular sampling, we also take recent work on phase
retrieval in infinite dimensional Hilbert spaces [13], [14], [15]
as motivation for exploring numerical methods to solve this
problem.

In particular, the recent work of Daubechies and her col-
laborators implies that the stability of such continuous phase
retrieval problems is generally less well behaved than their
discrete counterparts [14], [15]. Specifically, [15] characterizes
a class of functions for which infinite dimensional phase re-
trieval (up to a single global phase) from Gabor measurements
is unstable, and then proposes the reconstruction of these
worst-case functions up to several local phase multiples as
a stable alternative. We take this initial work on stable infinite
dimensional phase retrieval from Gabor measurements as a
further motivation to explore new fast numerical techniques
for the robust recovery of compactly supported functions from
their continuous spectrogram measurements.

A. The Problem Statement and Specifications
Given a vector of stacked spectrogram samples from (I.1),

~b =
(
b1,1, . . . , b1,N , b2,1, . . . , bK,N

)T ∈ [0,∞)NK , (I.2)

our goal is to approximately recover a piecewise smooth and
compactly supported function f : R → C. Of course f can
only be recovered up to certain ambiguities (such as up to a
global phase, etc.) which depend not only on f , but also the
window function g (see, e.g., [15]). Without loss of generality,
we will assume that the support of f is contained in [−1, 1].
Given our motivation from ptychographic imaging we will,
herein at least, primarily consider the unshifted beam function
g to also be (approximately) compactly supported within a
smaller subset [−a, a] ⊂ [−1, 1]. Furthermore, we will also
assume that g is smooth enough that its Fourier transform
decays relatively rapidly in frequency space compared to f̂ .
Examples of such g include both suitably scaled Gaussians,
as well as compactly supported C∞ bump functions [16].

B. The Proposed Numerical Approach
The proposed method aims to recover samples from the

Fourier transform of f at frequencies in Ω = {ω1, . . . , ωN},



giving ~f ∈ CN with fj = f̂(ωj), from which f̂ can then be
approximately recovered via standard sampling theorems (see,
e.g., [17]). The inverse Fourier transform of this approximation
of f̂ then provides our approximation of f .

Recovery of the samples from f̂ , ~f ∈ CN , is performed in
two steps using techniques from [11], [12] adapted to this
continuous setting: first, a truncated lifted linear system is
inverted in order to learn a portion of the rank-one matrix
~f ~f∗ from a finite set of STFT spectrogram samples, then,
an eigenvector based angular synchronization method is used
in order to recover ~f from the portion of ~f ~f∗ computed in
the first step. Note that this truncated lifted linear system
is both banded and Toeplitz, with band size determined by
the decay of ĝ. If g is effectively bandlimited to [−δ, δ] the
proposed lifting-based algorithm can be implemented to run
in O

(
δN(logN + δ2)

)
-time, which is essentially FFT-time in

N for small δ.

II. OUR LIFTED FORMULATION

The following theorem forms the basis of our lifted setup.

Theorem 1. Suppose f : R → C is piecewise smooth
and compactly supported in [−1, 1]. Let g ∈ L2 ([−a, a])
be supported in [−a, a] ⊂ [−1, 1] for some a < 1, with
‖g‖L2 = 1. Then for all ω ∈ R,

|F [f · Slg] (ω)| = 1

2

∣∣∣∣∣∑
m∈Z

e−πilmf̂
(m

2

)
ĝ
(m

2
− ω

)∣∣∣∣∣
for all shifts l ∈ [a− 1, 1− a].

Proof. Denote by Slg the right shift of g by l. The short-time
Fourier transform (STFT) [18] of f given g, at a shift l and
frequency ω, is defined by

F [f · Slg] (ω) =

ˆ ∞
−∞
f (t) g (t− l) e−2πiωtdt.

The squared magnitude of the Fourier transform above is
called a spectrogram measurement:

|F [f · Slg] (ω)|2 =

∣∣∣∣ˆ ∞
−∞
f (t) g (t− l) e−2πiωtdt

∣∣∣∣2 = |〈f, h〉|2

where h (t) = g (t− l)e2πiωt. We calculate

ĥ (k) =

ˆ ∞
−∞
h (t) e−2πiktdt

=

ˆ ∞
−∞
g (t− l)e2πiωte−2πiktdt

=

ˆ ∞
−∞
g (τ)e2πiω(τ+l)e−2πik(τ+l)dτ

= e2πil(ω−k)
ˆ ∞
−∞
g (τ)e−2πi(ω−k)τdτ.

By Plancherel’s theorem, we have

|〈f, h〉|2 =
∣∣∣〈f̂ , ĥ〉∣∣∣2 =

∣∣∣∣ˆ ∞
−∞
f̂ (k) ĥ (k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞
−∞
f̂ (k) e−2πil(ω−k)F

[
g (·)

]
(ω − k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞
−∞
f̂ (k) e2πilkF

[
g (·)

]
(ω − k)dk

∣∣∣∣2
=

∣∣∣∣ˆ ∞
−∞
f̂ (ω − η) e−2πilηF

[
g (·)

]
(η)dη

∣∣∣∣2
=

∣∣∣∣ˆ ∞
−∞
f̂ (ω − η) ĝ (−η) e−2πilηdη

∣∣∣∣2

where in the last equality we have used

F
[
g (·)

]
(η) = ĝ (−η) .

And so, by Shannon’s Sampling theorem [19], applied to
f̂ , we see that |F [f · Slg] (ω)|2 is equal to

∣∣∣∣ˆ ∞
−∞
f̂ (ω − η) ĝ (−η) e−2πilηdη

∣∣∣∣2
=

∣∣∣∣∣
ˆ ∞
−∞
ĝ (−η)

∑
m∈Z

f̂
(m

2

)
sincπ (m− 2 (ω − η)) e−2πilηdη

∣∣∣∣∣
2

=

∣∣∣∣∣∑
m∈Z

f̂
(m

2

) ˆ ∞
−∞
ĝ (−η) e−2πilηsincπ (m− 2 (ω − η)) dη

∣∣∣∣∣
2

=

∣∣∣∣∣∑
m∈Z

f̂
(m

2

) [
ĝ (·) e−2πil(·) ? sincπ (m+ 2 (·))

]
(−ω)

∣∣∣∣∣
2

where ? denotes convolution.

Recall that F [f ? g] = f̂ ĝ so that f ? g = F−1
[
f̂ ĝ
]
. We

calculate the Fourier transform

F
[
ĝ (·) e−2πil(·)

]
(ξ) = ˆ̂g (ξ + l) = g (−l − ξ) ,

and the Fourier transform F [sincπ (m+ 2 (·))] (ξ) as

F
[

sinπ (m+ 2x)

π (m+ 2x)

]
(ξ) =

eπimξ

2
χ(−1,1) (ξ) . (II.1)

With this, the spectrogram measurements |F [f · Slg] (ω)|2 are



given by∣∣∣∣∣∑
m∈Z

f̂
(m

2

)
F−1

[
g (−l − (·)) e

πim(·)

2
χ(−1,1) (·)

]
(−ω)

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)ˆ ∞
−∞
g (−l − x)eπimxχ(−1,1)(x) e−2πixωdx

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)ˆ 1

−1
g (−l − x) eπimxe−2πixωdx

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)ˆ −l−1
−l+1

g (u) eπi(−l−u)(m−2ω)du

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)
e−πil(m−2ω)

ˆ −l+1

−l−1
g (u) e−2πiu(

m
2 −ω)du

∣∣∣∣∣
2

.

Since l is such that [−l − 1,−l + 1]∩ [−a, a] = [−a, a], we
have that |F [f · Slg] (ω)|2 equals

1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)
e−πil(m−2ω)

ˆ a

−a
g (u) e−2πiu(

m
2 −ω)du

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

f̂
(m

2

)
e−πil(m−2ω)

ˆ ∞
−∞
g (u) e−2πiu(

m
2 −ω)du

∣∣∣∣∣
2

=
1

4

∣∣∣∣∣∑
m∈Z

e−πilmf̂
(m

2

)
ĝ
(m

2
− ω

)∣∣∣∣∣
2

.

We have now proven the theorem.

Using Theorem 1 we may now write

|F [f · Slg] (ω)|2 =
1

4

∑
k∈Z

∑
j∈Z

AkAj

where An := e−πilnf̂
(
n
2

)
ĝ
(
n
2 − ω

)
.

A. Obtaining a Truncated, Finite Lifted Linear System

If ĝ decays quickly we may truncate the sums above for a
given frequency ω with minimal error. To that end, we pick
the indices j and k so that

∣∣k
2 − ω

∣∣ ≤ δ and
∣∣ j
2 − ω

∣∣ ≤ δ for
some fixed δ ∈ N. If we denote

Sω = {(j, k) ∈ Z× Z| |k − 2ω| ≤ 2δ and |j − 2ω| ≤ 2δ} ,

then

|F [f · Slg] (ω)|2 =
1

4

∑
(j,k)∈Sω

AkAj + error.

We may write

∑
|j−2ω|≤2δ

eπilj f̂

(
j

2

)
ĝ

(
j

2
− ω

)
= e2πilω ~X∗l ~Yω

where ~Xl ∈ C4δ+1 and ~Yω ∈ C4δ+1 are the vectors

~Xl =



eπil(2δ)ĝ (−δ)
eπil(2δ−1)ĝ

(
1
2 − δ

)
...

eπil·0ĝ (0)
...

eπil(1−2δ)ĝ
(
δ − 1

2

)
eπil(−2δ)ĝ (δ)


, ~Yω =



f̂ (ω − δ)
f̂
(
ω − δ + 1

2

)
...

f̂ (ω)
...

f̂
(
ω + δ − 1

2

)
f̂ (ω + δ)


.

This notation allows us to write our measurements in a lifted
form

|F [f · Slg] (ω)|2 ≈ 1

4
e2πilω ~X∗l

~Yω · e2πilω ~X∗l ~Yω

=
1

4
~X∗l
~Yω~Y

∗
ω
~Xl.

Here, ~Yω~Y ∗ω is the rank-one matrix

∣∣∣f̂(ω − δ)
∣∣∣2 · · · f̂(ω − δ)f̂(ω) · · · f̂(ω − δ)f̂(ω + δ)

...
. . .

...
...

...

f̂(ω)f̂(ω − δ) · · ·
∣∣∣f̂(ω)

∣∣∣2 · · · f̂(ω)f̂(ω + δ)

...
...

...
. . .

...

f̂(ω + δ)f̂(ω − δ) · · · f̂(ω + δ)f̂(ω) · · ·
∣∣∣f̂(ω + δ)

∣∣∣2


.

For each ~Xl ∈ C4δ+1, rewrite it as

~Xl =
(
ml
−δ, ml

−δ+ 1
2

, . . . , ml
δ− 1

2

, ml
δ

)T
so that ml

k = e−πil(2k)ĝ (k). Then construct the Toeplitz
matrix Xl ∈ CN×N as

ml
0 ml

1
2

· · · ml
δ 0 0 · · · 0

ml
− 1

2

ml
0 · · · ml

δ− 1
2

ml
δ 0 · · · 0

...
...

...
...

...
...

...
...

0 0 · · · 0 ml
−δ ml

−δ+ 1
2

· · · ml
1
2

0 0 · · · 0 0 ml
−δ · · · ml

0


where N is the number of frequencies ω being considered.
Then we construct the block matrix G ∈ CNK×N as

G =


Xl1

Xl2
...

XlK


where K is the number of shifts of the window g.

Let F ∈ CN×N be defined as

Fi,j =

{
f̂
(
i−2n−1

2

)
f̂
(
j−2n−1

2

)
, if |i− j| ≤ 2δ,

0, otherwise,
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Figure III.1. Signal f and 11 shifts of a Gaussian window, g.
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Figure III.2. True signal f and its reconstruction for the first experiment.

where n = N−1
4 . Note that F is composed of overlapping

segments of the rank-1 matrices ~Yω~Y ∗ω for ω ∈ {−n, . . . , n}.
Thus, our measurements can be written as

~b ≈ diag(GFG∗), (II.2)

where ~b is defined in (I.2). By consistently vectorizing (II.2),
we can obtain a simple linear system which can be inverted
to learn ~F , a vectorized version of F. In particular, we have

~b ≈M~F , (II.3)

where the matrix M ∈ CNK×N2

can be computed by, e.g.,
passing the canonical basis elements for CN×N , Eij , through
(II.2).

We solve the linear system (II.3) as a least squares problem;
experiments have shown that M is of rank NK. The process
of recovering the Fourier coefficients of f from ~F is known
as angular synchronization, and is described in detail in [12].

III. NUMERICAL RESULTS

We test the Phase Retrieval algorithm above for two dif-
ferent choices of signal f . The first is a Gaussian signal
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Figure III.3. True signal f and its reconstruction for the second experiment.

f (x) = 2
1
4 e−25(

4x
3 )

2

χ[−1,1], and the second is a modified
Gaussian f (x) = 2

1
4 e−8πx

2

cos (24x)χ[−1,1]. In both cases,
the window used is the Gaussian g (x) = c·2 1

4 e−16πx
2

χ[− 1
2 ,

1
2 ]

where c is a constant chosen so that ‖g‖L2 = 1.
We use a total of 11 shifts of g in each experiment. Since g is

supported on
[
− 1

2 ,
1
2

]
, any two consecutive shifts are separated

by 0.5
11 (see Figure III.1). We choose 61 values of ω from

[−15, 15] sampled in half-steps, and set δ = 7.
The reconstructions in physical space are shown at selected

grid points in Figures III.2 and III.3. The relative `2 error
in physical space is 1.47× 10−3 for the first experiment and
1.872× 10−2 for the second.

IV. FUTURE WORK

While this paper addresses the 1D problem, the extension
of this method to the 2D setting is an appealing avenue
for future research. Indeed, preliminary results indicate that
the underlying discrete method that forms the basis for this
paper extends to two dimensions without too much difficulty.
Furthermore, empirical results suggest that the method propo-
sed here demonstrates robustness to noise, although we defer
a detailed analysis (and derivation of an associated robust
recovery guarantee) to future work.
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