1. Say for each of the following statements whether it is true or false (without explanation):

 a. \mathbb{Z} is an integral domain.
 True.

 b. \mathbb{Z}_6 is an integral domain.
 False. (It contains zero divisors: $[2] \cdot [3] = [0]$.)

 c. $\mathbb{R}[x]$ is a field.
 False. (Not every element is invertible, e.g. x.)

 d. $M_2(\mathbb{R})$ is a field.
 False. (There are zero divisors: \[
 \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}.\])

 e. In \mathbb{Z}, $5 | 15$.
 True.

 f. In \mathbb{Q}, $15 | 5$.
 True. ($5 = 15 \cdot \frac{1}{3}$ and $\frac{1}{3} \in \mathbb{Q}$.)

 g. In $\mathbb{Z}[x]$, $2x | x^2$.
 False.

 h. In $\mathbb{R}[x]$, $1 + x^2 + 5x^6 \equiv 2 + x^2 + 5x^6$ (mod x).
 False. (The difference between the polynomials is 1 which is not a multiple of x.)

2. Prove: In a commutative ring R, if $c|a$ and $c|b$ then $c|ab$.

 Proof: Since $c|a$, $a = rc$ for some integer r. Since $c|b$, $b = sc$ for some integer s. Therefore $ab = (rc)(sc) = (rsc)c$, which means $c|ab$.