Exercise.

- Let R and S be two integral domains. Is $R \times S$ always an integral domain, sometimes or never?
 Solution: Never. One can always look at $(1, 0)$ and $(0, 1)$. They are nonzero and their product is the zero element $(0, 0)$, so they are zero divisors and $R \times S$ is not an integral domain.

- Let S be a subring of an integral domain R. Assume S contains 1. Is S necessarily an integral domain?
 Solution: Yes. Since S is a subring of R, it must also be commutative, and it is assumed to contain 1. Every two nonzero elements in S are also nonzero elements of R, so their product is nonzero because R is an integral domain. Therefore S contains no zero divisors, hence it is an integral domain.

- Let S be a subring of a field R. Assume S contains 1. Is S necessarily a field?
 Solution: No. Take $R = \mathbb{Q}$ and $S = \mathbb{Z}$. S is a subring of R containing 1, but it is not a field.