Exercises.
Consider the ring \(\mathbb{Z} \times \mathbb{Z}_6 \). Say which of the following are subrings of this ring:

- \(\mathbb{Z} \times \mathbb{Z}_3 \).
- \(\mathbb{Z} \times [2] \cdot \mathbb{Z}_6 \).
- \(\mathbb{Z}_6 \times [2] \cdot \mathbb{Z}_6 \).
- \(6\mathbb{Z} \times [2] \cdot \mathbb{Z}_6 \).
- \(6\mathbb{Z} \times \{[0],[1],[2]\} \).
- \(6\mathbb{Z} \times \{[0],[3]\} \).

Before solving the exercise, we shall start with the following statement:

Theorem.
Given rings \(A_1 \) and \(A_2 \) and subsets \(B_1 \subseteq A_1 \) and \(B_2 \subseteq A_2 \), \(B_1 \times B_2 \) is a subring of \(A_1 \times A_2 \) if and only if both \(B_1 \) is a subring of \(A_1 \) and \(B_2 \) is a subring of \(A_2 \).

Proof.
Recall that a subset \(S \subseteq R \) is a subring of \(R \) if the following holds

- \(S \) contains the zero.
- \(S \) is closed under addition.
- \(S \) is closed under multiplication.
• S contains the negatives of its elements.

The zero element in $A_1 \times A_2$ is $(0,0)$. By the definition of Cartesian product, (a, b) is in $B_1 \times B_2$ if and only if $a \in B_1$ and $b \in B_2$. By taking $a = 0$ and $b = 0$ one immediately obtains that $(0,0)$ is in $B_1 \times B_2$ if and only if $0 \in B_1$ and $0 \in B_2$.

Let $(a, b) \in B_1 \times B_2$. (By what we have just written, this is equivalent to saying $a \in B_1$ and $b \in B_2$.) $-(a, b) = (-a, -b)$, so $-(a, b) \in B_1 \times B_2$ if and only if $-(a, -b) \in B_1 \times B_2$ which holds if and only if $-a \in B_1$ and $-b \in B_2$.

Let $(a_1, b_1), (a_2, b_2) \in B_1 \times B_2$. $(a_1, b_1) + (a_2, b_2) = (a_1 + a_2, b_1 + b_2)$. Therefore $(a_1, b_2) + (a_2, b_2) \in B_1 \times B_2$ if and only if $(a_1 + a_2, b_1 + b_2) \in B_1 \times B_2$ which holds if and only if $a_1 + a_2 \in B_1$ and $b_1 + b_2 \in B_2$. Similarly, $(a_1, b_1) \cdot (a_2, b_2) \in B_1 \times B_2$ if and only if $(a_1 a_2, b_1 b_2) \in B_1 \times B_2$ which holds if and only if $a_1 a_2 \in B_1$ and $b_1 b_2 \in B_2$.

So $B_1 \otimes B_2$ satisfies the required axioms of a subring if and only if B_1 and B_2 satisfy those axioms.

Solution to the exercise.

$\mathbb{Z} \times \mathbb{Z}_3$ is not a subring of $\mathbb{Z} \times \mathbb{Z}_6$, because \mathbb{Z}_3 is not a subring of \mathbb{Z}_6. Remember!!!

We write $\mathbb{Z}_3 = \{[0], [1], [2]\}$ and $\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\}$ for convenience, but this notation is misleading. The element $[0]$ in \mathbb{Z}_3 is NOT the same element as $[0]$ in \mathbb{Z}_6! The element $[0]$ in \mathbb{Z}_3 is the SET $3\mathbb{Z} = \{3n : n \in \mathbb{Z}\}$ whereas the element $[0]$ in \mathbb{Z}_6 is the SET $6\mathbb{Z} = \{6n : n \in \mathbb{Z}\}$.

$\mathbb{Z} \otimes 2\mathbb{Z}_6$ is by this logic a subring of $\mathbb{Z} \times \mathbb{Z}_6$. ($2\mathbb{Z}_6$ is a subring of \mathbb{Z}_6.) $\mathbb{Z}_6 \times 2\mathbb{Z}_6$ is not a subring, because \mathbb{Z}_6 is not a subring of \mathbb{Z}.

$6\mathbb{Z} \otimes 2\mathbb{Z}_6$ is a subring. ($6\mathbb{Z}$ is a subring of \mathbb{Z}.) $6\mathbb{Z} \times 2\mathbb{Z}_6$ is not a subring, because \mathbb{Z}_6 is not closed under addition in \mathbb{Z}_6 (and so not a subring of \mathbb{Z}_6).

$6\mathbb{Z} \times \{[0], [3]\}$ is a subring. The set $\{[0], [3]\}$ is a subring of \mathbb{Z}_6. It can also be written as $[3] \cdot \mathbb{Z}_6$.

2