Contents

1 Set, Relations and Functions
 1.1 Logic . 5
 1.2 Sets . 12
 1.3 Relations and Functions . 16
 1.4 The Natural Numbers and Induction . 23
 1.5 Equivalence Relations . 26

2 Rings
 2.1 Definitions and Examples . 31
 2.2 Elementary Properties of Rings . 34
 2.3 The General Associative Commutative and Distributive Laws in Rings 38
 2.4 Divisibility and Congruence in Rings . 40
 2.5 Modular Arithmetic in Commutative Rings . 48
 2.6 Subrings . 51
 2.7 Units in Rings . 53
 2.8 The Euclidean Algorithm for Integers . 58
 2.9 Integral Primes . 62
 2.10 Isomorphism and Homomorphism . 64
 2.11 Associates in commutative rings . 73

3 Polynomial Rings
 3.1 Addition and Multiplication . 77
 3.2 Divisibility in $F[x]$. 86
 3.3 Irreducible Polynomials . 94
 3.4 Polynomial function . 99
 3.5 Irreducibility in $Q[x]$. 108

4 Congruence Classes in $F[x]$
 4.1 The Congruence Relation . 113
 4.2 Congruence Class Arithmetic . 116
 4.3 $F_p[\alpha]$ when p is irreducible . 122
5 Ideals and Quotients .. 125
 5.1 Ideals .. 125
 5.2 Quotient Rings .. 129

A Logic .. 135
 A.1 Rules of Logic ... 135

B Relations, Functions and Partitions 137
 B.1 The inverse of a function 137
 B.2 Partitions .. 139

C Real numbers, integers and natural numbers 141
 C.1 Definition of the real numbers 141
 C.2 Algebraic properties of the integers 143
 C.3 Properties of the order on the integers 143
 C.4 Properties of the natural numbers 143

D The Associative, Commutative and Distributive Laws 145
 D.1 The General Associative Law 145
 D.2 The general commutative law 146
 D.3 The General Distributive Law 149

E Verifying Ring Axioms .. 151

F Constructing rings from given rings 153
 F.1 Direct products of rings 153
 F.2 Matrix rings .. 153
 F.3 Polynomial Rings ... 156

G Cardinalities .. 161
 G.1 Cardinalities of Finite Sets 161
Chapter 1

Set, Relations and Functions

1.1 Logic

In this section we will provide an informal discussion of logic. A statement is a sentence which is either true or false, for example

(1) \(1 + 1 = 2\)
(2) \(\sqrt{2}\) is a rational number.
(3) \(\pi\) is a real number.
(4) Exactly 1323 bald eagles were born in 2000 BC,

all are statements. Statement (1) and (3) are true. Statement (2) is false. Statement (4) is probably false, but verification might be impossible. It nevertheless is a statement.

Let \(P\) and \(Q\) be statements.

"\(P\) and \(Q\)" is the statement that \(P\) is true and \(Q\) is true. We illustrate the statement \(P\) and \(Q\) in the following truth table

<table>
<thead>
<tr>
<th>(P)</th>
<th>(Q)</th>
<th>(P \text{ and } Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(T)</td>
<td>(T)</td>
<td>(T)</td>
</tr>
<tr>
<td>(T)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(T)</td>
<td>(F)</td>
</tr>
<tr>
<td>(F)</td>
<td>(F)</td>
<td>(F)</td>
</tr>
</tbody>
</table>

"\(P\) or \(Q\)" is the statement that at least one of \(P\) and \(Q\) is true:
CHAPTER 1. SET, RELATIONS AND FUNCTIONS

<table>
<thead>
<tr>
<th></th>
<th>P or Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

So “P or Q” is false exactly when both P and Q are false.

“not-P” (pronounced ‘not P’ or ‘negation of P’) is the statement that P is false:

<table>
<thead>
<tr>
<th></th>
<th>not-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

So not-P is true if P is false. And not-P is false if P is true.

“P \implies Q” (pronounced “P implies Q”) is the statement “If P is true, then Q is true”:

<table>
<thead>
<tr>
<th></th>
<th>P or Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

Note here that if P is true, then “P \implies Q” is true if and only if Q is true. But if P is false, then “P \implies Q” is true, regardless whether Q is true or false.

Consider the statement “Q or not-P” :

<table>
<thead>
<tr>
<th></th>
<th>not-P</th>
<th>Q or not-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

(*)

"Q or not-P" is true if and only "P \implies Q" is true.
This shows that one can express the logical operator “⇒⇒” in terms of the operators “not-” and “or”.

“P ⇔ Q” (pronounced “P is equivalent to Q”) is the statement that P is true if and only if Q is true:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ⇔ Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
</tbody>
</table>

So P ⇔ Q is true if either both P and Q are true, or both P and Q are false. Hence

(∗∗) "P ⇔ Q" is true if and only "(P and Q) or (not-P and not-Q)" is true.

To show that P and Q are equivalent often shows that P implies Q and that Q implies P. Indeed the truth table

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ⇒ Q</th>
<th>Q ⇒ P</th>
<th>(P ⇒ Q) and (Q ⇒ P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

shows that

(∗∗∗) "P ⇔ Q" is true if and only "(P ⇒ Q) and (Q ⇒ P)" is true.

Often, rather than showing that a statement is true, one shows that the negation of the statement is false (This is called a proof by contradiction). To do this it is important to be able to determine the negation of statement. The negation of not-P is P:

<table>
<thead>
<tr>
<th>P</th>
<th>not-P</th>
<th>not-(not-P)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The negation of "P and Q" is " not-P or not-Q":
The negation of "P or Q" is "not-P and not-Q":

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P or Q</th>
<th>not-(P or Q)</th>
<th>not-P</th>
<th>not-Q</th>
<th>not-P or not-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
</tbody>
</table>

The statement “not-Q ⇒ not-P” is called the **contrapositive** of the statement “P ⇒ Q”. It is equivalent to the statement “P ⇒ Q”:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ⇒ Q</th>
<th>not-Q</th>
<th>not-P</th>
<th>not-Q ⇒ not-P</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>

The statement “not-P ⇔ not-Q” is called the contrapositive of the statement “P ⇔ Q”. It is equivalent to the statement “P ⇔ Q”:

<table>
<thead>
<tr>
<th>P</th>
<th>Q</th>
<th>P ⇔ Q</th>
<th>not-P</th>
<th>not-Q</th>
<th>not-P ⇔ not-Q</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>T</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
</tbody>
</table>
The statement “$Q \implies P$” is called the converse of the statement “$P \implies Q$”. In general the converse is not equivalent to the original statement. For example the statement if $x = 0$ then x is an even integer is true. But the converse (if x is an even integer, then $x = 0$) is not true.

Theorem 1.1.1 (Principal of Substitution). Let $\Phi(x)$ be formula involving a variable x. For an object d let $\Phi(d)$ be the formula obtained from $\Phi(x)$ by replacing all occurrences of x by d. If a and b are objects with $a = b$, then $\Phi(a) = \Phi(b)$.

Proof. This should be self evident. For an actual proof and the definition of an formula consult your favorite logic book.

Example 1.1.2. Let $\Phi(x) = x^2 + 3x + 4$.

If $a = 2$, then

$$a^2 + 3a + 4 = 2^2 + 3 \cdot 2 + 4$$

Notation 1.1.3. Let $P(x)$ be a statement involving the variable x.

(a) “for all $x : P(x)$” is the statement that for objects a the statements $P(a)$ is true. Instead of “for all $x : P(x)$” we will also use “$\forall x : P(x)$”, “$P(x)$ is true for all x”, “$P(x)$ holds for all x” or similar phrases.

(b) “there exists $x : P(x)$” is the statement there exists an object a such that the statements $P(a)$ is true. Instead of “there exists $x : P(x)$” we will use “$\exists x : P(x)$”, “$P(x)$ is true for some x”, “There exists x with $P(x)$” or similar phrases.

Example 1.1.4. “for all $x : x + x = 2x$” is a true statement.

“for all $x : x^2 = 2$” is a false statement.

“there exists $x : x^2 = 2$” is a true statement.

“$\exists x : x^2 = 2$ and x is an integer” is false statement

Notation 1.1.5. Let $P(x)$ be a statement involving the variable x.

(a) “There exists at most one $x : P(x)$” is the statement

$$P(x) \text{ and } P(y) \implies x = y$$

(b) “There exists a unique $x : P(x)$” is the statement

$$\text{there exists } x : \quad P(y) \iff y = x$$
Example 1.1.6. “There exists at most one \(x : (x^2 = 1 \text{ and } x \text{ is a real number}) \)” is false since \(1^1 = 1 \) and \((-1)^1 = 1 \), but \(1 \neq -1 \).

“There exist a unique \(x : (x^3 = -1 \text{ and } x \text{ is a real number}) \)” is true since \(x = -1 \) is the only elements in \(\mathbb{R} \) with \(x^3 = -1 \).

“There exists at most one \(x : (x^2 = -1 \text{ and } x \text{ is a real number}) \)” is true, since there does not exist any element \(x \in \mathbb{R} \) with \(x^2 = -1 \).

“There exists a unique \(x : (x^2 = -1 \text{ and } x \text{ is a real number}) \)” is false, since there does not exist any element \(x \in \mathbb{R} \) with \(x^2 = -1 \).

Lemma 1.1.7. Let \(P(x) \) be statement involving the variable \(x \). Then

\[
(\text{ there exists } x : P(x) \text{) and } (\text{ there exists at most one } x : P(x) \text{)}
\]

if and only if

there exists a unique \(x : P(x) \)

Proof. \(\Rightarrow \): Suppose first that

\[
(\text{ there exists } x : P(x) \text{) and } (\text{ there exists at most one } x : P(x) \text{)}
\]

hold. By definition of “There exists:” we conclude that there exists an object \(a \) such that \(P(a) \) is true. Also by definition of “There exists at most one”:

\[
(\ast) \quad P(x) \text{ and } P(y) \implies x = y.
\]

From \(\ast \) and the principal of substitution:

\[
(\ast\ast) \quad P(a) \text{ and } P(y) \implies a = y
\]

By A.1.1(LR 7) \(P \iff (T \text{ and } P) \) whenever \(P \) is a statement and \(T \) is a true statement. Since \(P(a) \) is a true statement we conclude that

\[
(\ast\ast\ast) \quad P(y) \iff P(a) \text{ and } P(y)
\]

From \(\ast\ast\ast \) and \(\ast\ast \) we conclude that

\[
(+) \quad P(y) \implies a = y.
\]

If \(a = y \), then since \(P(a) \) is true, we Principal of Substitution shows that \(P(y) \) is true. Thus

\[
(++) \quad a = y \implies P(y)
\]
From (+) and (+++) we get

\[P(y) \iff a = y. \]

Hence the definition of “There exists a unique” gives

There exists a unique \(x : P(x) \).

\(\iff \): Suppose next that

There exists a unique \(x : P(x) \)

holds. Then by definition of “There exists a unique”:

\[\text{there exists } x : P(y) \iff x = y. \]

and so there exists an object \(a \) such that

\[(+++) \quad P(y) \iff a = y. \]

Since \(a = a \) is true, we conclude that \(P(a) \) is true. Thus

\[(#) \quad \text{there exists } x : P(x). \]

holds.

Suppose “\(P(x) \) and \(P(y) \)” is true. Then \(P(x) \) is true and (++) shows that \(x = a \). Also \(P(y) \) is true and (+++) gives \(y = a \). From \(x = a \) and \(y = a \) we get \(x = y \) (by the Principal of Substitution). We proved that

\[P(x) \text{ and } P(y) \implies x = y. \]

and so the definition of “There exists at most one” gives

\[(##) \quad \text{There exists at most one } x : P(x). \]

From (#) and (##) we have

\[\text{there exists } x : P(x) \quad \text{and} \quad \text{There exists at most one } x : P(x). \]

\[\square \]

Exercises 1.1:

1. Convince yourself that each of the statement in \(A.1.1 \) are true.

2. Use a truth table to verify the statements LR 17, LR 26, LR 27 and LR 28 in \(A.1.1 \).
1.2 Sets

First of all any set is a collection of objects.

For example
\[\mathbb{Z} := \{ \ldots, -4, -3, -2, -1, 0, 1, 2, 3, 4, \ldots \} \]
is the set of integers. If \(S \) is a set and \(x \) an object we write \(x \in S \) if \(x \) is a member of \(S \) and \(x \notin S \) if \(x \) is not a member of \(S \). In particular,

\[(*) \quad \text{For all } x \text{ exactly one of } x \in S \text{ and } x \notin S \text{ holds.} \]

Not all collections of objects are sets. Suppose for example that the collection \(B \) of all sets is a set. Then \(B \in B \). This is rather strange, but by itself not a contradiction. So lets make this example a little bit more complicated. We call a set \(S \) nice if \(S \notin S \). Let \(D \) be the collection of all nice sets and suppose \(D \) is a set.

Is \(D \) a nice set?

Suppose that \(D \) is a nice set. Since \(D \) is the collection of all nice sets, \(D \) is a member of \(D \). Thus \(D \in D \), but then by the definition of nice set, \(D \) is not nice set.

Suppose that \(D \) is not nice set. Then by definition of a nice set we have that \(D \in D \). Since \(D \) is the collection of nice sets, this means that \(D \) is nice.

We proved that \(D \) is nice set if and only if \(D \) is not nice set. This of course is absurd. So \(D \) cannot be a set.

Theorem 1.2.1. Let \(A \) and \(B \) be sets. Then

\[(A = B) \iff (\text{for all } x : (x \in A) \iff (x \in B)) \]

Proof. Naively this just says that two sets are equal if and only if they have the same members. In actuality this turns out to be one of the axioms of set theory. \(\square \)

Definition 1.2.2. Let \(A \) and \(B \) be sets. We say that \(A \) is subset of \(B \) and write \(A \subseteq B \) if

\[\text{for all } x : (x \in A) \implies (x \in B) \]

In other words, \(A \) is a subset of \(B \) if all the members of \(A \) are also members of \(B \).

Theorem 1.2.3. Let \(A \) and \(B \) be sets. Then \(A = B \) if and only if \(A \subseteq B \) and \(B \subseteq A \).

Proof.

\[A = B \]
\[\iff x \in A \iff x \in B \quad \text{[1.2.1]} \]
\[\iff (x \in A \implies x \in B) \text{ and } (x \in B \implies x \in A) \quad \text{Rule of Logic: [A.1.1][LR 19]} : (P \iff Q) \]
\[\iff ((P \implies Q) \text{ and } (Q \implies P)) \]
\[\iff A \subseteq B \text{ and } B \subseteq A \quad \text{definition of subset} \]
Theorem 1.2.4. Let \(x \) be an object. Then there exists a set, denote by \(\{x\} \) such that
\[
t \in \{x\} \iff t = x
\]

Proof. This is an axiom of Set Theory.

Theorem 1.2.5. Let \(S \) be a set and let \(P(x) \) be a statement involving the variable \(x \). Then there exists a set, denoted by \(\{s \in S \mid P(s)\} \) such that
\[
t \in \{s \in S \mid P(s)\} \iff t \in S \text{ and } P(t)
\]

Proof. This follows from the so called replacement axiom in set theory.

Note that an object \(t \) is a member of \(\{s \in S \mid P(s)\} \) if and only if \(t \) is a member of \(S \) and the statement \(P(t) \) is true.

Example 1.2.6.
\[
\{x \in \mathbb{Z} \mid x^2 = 1\} = \{1, -1\}.
\]
\[
\{x \in \mathbb{Z} \mid x > 0\} \text{ is the set of positive integers.}
\]

Notation 1.2.7. Let \(S \) be a set and \(P(x) \) a statement involving the variable \(x \).

(a) "for all \(x \in S : P(x) \)" is the statement
\[
\text{for all } x : x \in S \implies P(x)
\]

(b) "there exists \(x \in S : P(x) \)" is the statement
\[
\text{there exists } x : x \in S \text{ and } P(x)
\]

Example 1.2.8. (1) "for all \(x \in \mathbb{R} : x^2 \geq 0 \)" is a true statement.

(2) "there exists \(x \in \mathbb{Q} : x^2 = 2 \)" is a false statement.

Theorem 1.2.9. Let \(S \) be a set and let \(\Phi(x) \) be a formula involving the variable \(x \) such that \(\Phi(s) \) is defined for all \(s \) in \(S \). Then there exists a set, denoted by \(\{\Phi(s) \mid s \in S\} \) such that
\[
t \in \{\Phi(s) \mid s \in S\} \iff \text{there exists } s \in S : t = \Phi(s)
\]

Proof. This also follows from the replacement axiom in set theory.

Note that the members of \(\{\Phi(s) \mid s \in S\} \) are all the objects of the form \(\Phi(s) \), where \(s \) is a member of \(S \).
Example 1.2.10.

\(\{2x \mid x \in \mathbb{Z} \} \) is the set of even integers

\(\{x^3 \mid x \in \{-1, 2, 5\} \} = \{ -1, 8, 125 \} \)

We now combine the two previous theorems into one:

Theorem 1.2.11. Let \(S \) be a set, let \(P(x) \) be a statement involving the variable \(x \) and \(\Phi(x) \) a formula such that \(\Phi(s) \) is defined for all \(s \) in \(S \) for which \(P(s) \) is true. Then there exists a set, denoted by

\[\{ \Phi(s) \mid s \in S \text{ and } P(s) \} \]

such that

\[t \in \{ \Phi(s) \mid s \in S \text{ and } P(s) \} \iff \text{there exists } s \in S : \left(P(s) \text{ and } t = \Phi(s) \right) \]

Proof. Define

\((*)\)

\[\{ \Phi(s) \mid s \in S \text{ and } P(s) \} = \{ \Phi(s) \mid s \in \{ r \in S \mid P(r) \} \} \]

Then

\[t \in \{ \Phi(s) \mid s \in S \text{ and } P(s) \} \]

\[\iff t \in \{ \Phi(s) \mid s \in \{ r \in S \mid \Phi(r) \} \} \]

By \((*)\)

\[\iff \text{there exists } s \in \{ r \in S \mid P(r) \} \text{ with } t = \Phi(s) \] \[\overset{1.2.9}{\iff} \]

\[\iff \text{there exists } s \text{ with } \left(s \in \{ r \in S \mid P(r) \} \text{ and } t = \Phi(s) \right) \]

definition of ‘there exists \(s \in \)’ see 1.2.7

\[\iff \text{there exists } s \text{ with } \left(s \in S \text{ and } (P(s) \text{ and } t = \Phi(s)) \right) \]

Rule of Logic: \([A.1.1][LR 24]\) :

\[(P \text{ and } (Q \text{ and } R)) \iff ((P \text{ and } Q) \text{ and } R) \]

\[\iff \text{there exists } s \in S \text{ with } (P(s) \text{ and } t = \Phi(s)) \]

definition of ‘there exists \(s \in \)’ see 1.2.7

\(\square \)

Note that the members of \(\{ \Phi(s) \mid s \in S \text{ and } P(s) \} \) are all the objects of the form \(\Phi(s) \), where \(s \) is a member of \(S \) for which \(P(s) \) is true.

Example 1.2.12.

\(\{2n \mid n \in \mathbb{Z} \text{ and } n^2 = 1\} = \{2, -2\} \)

\(\{-x \mid x \in \mathbb{R} \text{ and } x > 0\} \) is the set of negative real numbers
Theorem 1.2.13. Let A and B be sets.

(a) There exists a set, denoted by $A \cup B$ and called ‘A union $B’$, such that
\[x \in A \cup B \iff x \in A \text{ or } x \in B \]

(b) There exists a set, denoted by $A \cap B$ and called ‘A intersect $B’$, such that
\[x \in A \cap B \iff x \in A \text{ and } x \in B \]

(c) There exists a set, denoted by $A \setminus B$ and called ‘A removed $B’$, such that
\[x \in A \setminus B \iff x \in A \text{ and } x \notin B \]

(d) There exists a set, denoted by \emptyset and called empty set, such that
for all x : $x \notin \emptyset$

(e) Let a and b be objects, then there exists a set, denoted by $\{a,b\}$, that
\[x \in \{a,b\} \iff x = a \text{ or } x = b \]

Proof. (a) This is another axiom of set theory.
(b) Applying 1.2.5 with $P(x)$ being the statement “$x \in B” we can define

\[A \cap B := \{x \in A \mid x \in B\} \]

(c) Applying 1.2.5 with $P(x)$ being the statement “$x \notin B” we can define

\[A \setminus B := \{x \in A \mid x \notin B\} \]

(d) One of the axioms of set theory implies the existence of a set A. Then we can define

\[\emptyset := A \setminus A \]

(e) Define $\{a,b\} := \{a\} \cup \{b\}$. Then
\[
x \in \{a,b\}
\iff x \in \{a\} \cup \{b\} \quad \text{definition of } \{a,b\}
\iff x \in \{a\} \text{ or } x \in \{b\} \quad \text{1.2.4}
\iff x = a \text{ or } x = b \quad \text{1.2.4}
\]

\[\square \]
Exercises 1.2:

#1. Let A be a set. Prove that $\emptyset \subseteq A$.

#2. Let A and B be sets. Prove that $A \cap B = B \cap A$.

#3. List all elements of the following sets:
 (a) \(\{ x \in \mathbb{Q} \mid x^2 - 3x + 2 = 0 \} \).
 (b) \(\{ x \in \mathbb{Z} \mid x^2 < 5 \} \).
 (c) \(\{ x^3 \mid x \in \mathbb{Z} \text{ and } x^2 < 5 \} \).

1.3 Relations and Functions

Definition 1.3.1. Let a, b and c be objects.

(a) \((a, b) := \{ \{ a \}, \{ a, b \} \} \). (a, b) is called the (ordered) pair formed by a and b. a is called the first coordinate of (a, b) and b the second coordinate of (a, b).

(b) \((a, b, c) := ((a, b), c) \). (a, b, c) is called the (ordered) triple formed by a, b and c.

Theorem 1.3.2. Let a, b, c, d, e and f be objects.

(a) \((a, b) = (c, d) \iff (a = c \text{ and } b = d) \).

(b) \((a, b, c) = (d, e, f) \iff (a = d \text{ and } b = e \text{ and } c = f) \).

Proof. (a): See Exercise 1.3.1.

(b)\[
(a, b, c) = (d, e, f) \\
\iff ((a, b), c) = ((d, e), f) \quad \text{-- definition of triple} \\
\iff (a, b) = (d, e) \text{ and } (c, f) \quad \text{-- Part (a) of this theorem} \\
\iff a = d \text{ and } b = e \text{ and } e = f \quad \text{-- Part (a) of this theorem}
\]

\[\square \]

Theorem 1.3.3. Let A and B be sets. Then there exists a set, denoted by $A \times B$, such that

\[x \in A \times B \iff \text{there exist } a \in A \text{ and } b \in B \text{ with } x = (a, b) \]

Proof. This can be deduced from the axioms of set theory. \[\square \]
Example 1.3.4. Let $A = \{1, 2\}$ and $B = \{2, 3, 5\}$. Then

$$A \times B = \{(1, 2), (1, 3), (1, 5), (2, 2), (2, 3), (2, 5)\}$$

Definition 1.3.5. Let A and B be sets.

(a) A relation R from A to B is a triple (A, B, T), such that T is a subset of $A \times B$. Let a and b be objects. We say that a is in R-relation to b and write aRb if $(a, b) \in T$. So aRb is a statement and

$$aRb \text{ if and only if } (a, b) \in T.$$

(b) Let $R = (A, B, T)$ be a relation.

$$\text{Dom } R := A \quad \text{CoDom } R := B \quad \text{Im } R := \{b \in B \mid \text{there exists } a \in A \text{ with } aRb\} \quad \text{CoIm } R := \{a \in A \mid \text{there exists } b \in B \text{ with } aRb\}$$

(c) A relation on A is a relation from A to A.

Example 1.3.6. (1) Using our formal definition of a relation, the familiar relation \leq on the real numbers, would be the triple

$$\left(\mathbb{R}, \mathbb{R}, \{(a, b) \in \mathbb{R} \times \mathbb{R} \mid a \leq b\}\right)$$

(2) Let $A = \{1, 2, 3\}$, $B = \{a, b, c\}$, $T = \{(1, a), (1, c), (2, b), (3, b)\}$. Then the relation $\sim := (A, B, T)$ can be visualized by the following diagram:

![Diagram]

Also $1 \sim 1$ is a true statement, $1 \sim b$ is a false statement, $2 \sim a$ is false statement, and $2 \sim b$ is a true statement.

Definition 1.3.7. (a) A function from A to B is a relation F from A to B such that for all $a \in A$ there exists a unique b in B with aFb. We denote this unique b by $F(a)$ (or by Fa). So

for all $a \in A$ and $b \in B$: \[b = F(a) \iff aFb \]

$F(a)$ is called the image of a under F. If $b = F(a)$ we will say that F maps a to b.

(b) We write “\(F : A \to B \) is function” for “\(A \) and \(B \) are sets and \(F \) is a function from \(A \) to \(B \)”.

(c) Let \(F : A \to B \) be a function and \(C \) a subset of \(A \). Then \(F[C] := \{ F(c) \mid c \in C \} \).

Example 1.3.8.
(a) \(F = (\mathbb{R}, \mathbb{R}, \{(x, x^2) \mid x \in \mathbb{R}\}) \) is a function with \(F(x) = x^2 \) for all \(x \in \mathbb{R} \).

(b) \(F = (\mathbb{R}, \mathbb{R}, \{(x^2, x^3) \mid x \in \mathbb{R}\}) \) is the relation with \(x^2 F x^3 \) for all \(x \in \mathbb{R} \). For \(x = 1 \) we see that \(1 F 1 \) and for \(x = -1 \) we see that \(1 F -1 \). So \(F \) is not a function.

(c) Let \(A = \{1, 2, 3\} \), \(B = \{4, 5, 6\} \), \(T = \{(1, 4), (2, 5), (2, 6)\} \) and \(R = (A, B, T) \):

\[
\begin{array}{ccc}
1 & & 4 \\
2 & & 5 \\
3 & & 6 \\
\end{array}
\]

Then \(R \) is not a function from \(A \) to \(B \). Indeed, there does not exist an element \(b \) in \(R \) with \(1Rb \). Also there exists two elements \(b \) in \(B \) with \(2Rb \) namely \(b = 5 \) and \(b = 6 \).

(d) Let \(A = \{1, 2, 3\} \), \(B = \{4, 5, 6\} \), \(S = \{(1, 4), (2, 5), (3, 5)\} \) and \(F = (A, B, T) \):

\[
\begin{array}{ccc}
1 & & 4 \\
2 & & 5 \\
3 & & 6 \\
\end{array}
\]

Then \(F \) is the function from \(A \) to \(B \) with \(F(1) = 4 \), \(F(2) = 5 \) and \(F(3) = 5 \).

Notation 1.3.9. \(A \) and \(B \) be sets and suppose that \(\Phi(x) \) is a formula involving a variable \(x \) such that for all \(x \) in \(A \)

\[\Phi(a) \text{ is defined and } \Phi(a) \in B. \]

Put \(T = \{(a, \Phi(a)) \mid a \in A\} \) and \(F = (A, B, T) \). Then \(F \) is a function from \(A \) to \(B \). We denote this function by

\[F : A \to B, \quad a \to \Phi(a). \]

So \(F \) is a function from \(A \) to \(B \) and \(F(a) = \Phi(a) \) for all \(a \in A \).

Example 1.3.10.
(1) \(F : \mathbb{R} \to \mathbb{R}, \quad r \to r^2 \) denotes the function from \(\mathbb{R} \) to \(\mathbb{R} \) with \(F(r) = r^2 \) for all \(r \in \mathbb{R} \).
1.3. RELATIONS AND FUNCTIONS

(2) \(F : \mathbb{R} \to \mathbb{R}, \ x \to \frac{1}{x} \) is not a function, since \(\frac{1}{0} \) is not defined.

(3) \(F : \mathbb{R} \setminus \{0\} \to \mathbb{R}, \ x \to \frac{1}{x} \) is a function.

Theorem 1.3.11. Let \(f : A \to B \) and \(g : C \to D \) be functions. Then \(f = g \) if and only if \(A = C, B = D \) and \(f(a) = g(a) \) for all \(a \in A \).

Proof. By definition of a function, \(f = (A, B, R) \) and \(g = (C, D, S) \) where \(R \subseteq A \times B \) and \(S \subseteq C \times D \). By 1.3.2(b):

\((*) \quad f = g \) if and only of \(A = C, B = D \) and \(R = S \).

\(\implies \): If \(f = g \), then the Principal of Substitution implies, \(f(a) = g(a) \) for all \(a \in A \). Also by \((*) \), \(A = C \) and \(B = D \).

\(\iff \): Suppose now that \(A = C, B = D \) and \(f(a) = g(a) \) for all \(a \in A \). By \((*) \) it suffices to show that \(R = S \).

Let \(a \in A \) and \(b \in B \).

\[
(a, b) \in R \\
\iff \quad a \sim b \quad \text{---definition of } a \sim b \\
\iff \quad b = f(a) \quad \text{---the definition of } f(a) \\
\iff \quad b = g(a) \quad \text{---since } f(a) = g(a) \\
\iff \quad a \sim g(b) \quad \text{---definition of } g(a) \\
\iff \quad (a, b) \in S \quad \text{---definition of } a \sim g(b)
\]

Since \(A = C \) and \(B = D \), both \(R \) and \(S \) are subsets of \(A \times B \). Hence each element of \(R \) and \(S \) is of the form \((a, b), a \in A, b \in B \). It follows that \(x \in R \) if and only if \(x \in S \) and so \(R = S \) by 1.2.1.

Definition 1.3.12. Let \(R \) be a relation from \(A \) to \(B \),

(a) \(R \) is called 1-1 (or injective) if for all \(b \in B \) there exists at most one \(a \) in \(A \) with \(aRb \).

(b) \(R \) is called onto (or surjective) if for all \(b \in B \) there exists at least one \(a \) in \(A \) with \(aRb \).

(c) \(R \) is called a 1-1 correspondence (or bijective) if for all \(a \in A \) there exists a unique \(b \in B \) with \(aRb \) and for all \(d \in B \) there exists a unique \(c \in A \) with \(cRd \).

Example 1.3.13. (1) The relation

- 1 \(\sim \) 4
- 2 \(\sim \) 5
- 3 \(\sim \) 6

A \quad B
is 1-1 and onto, but its is neither a function nor a 1-1 correspondence.

(2) The relation

\[
\begin{array}{ccc}
1 & \quad & 4 \\
2 & \quad & 5 \\
3 & \quad & 6 \\
\end{array}
\]

is a 1-1 function, but is neither onto nor a 1-1 correspondence.

Lemma 1.3.14.
(a) Let \(f \) be a relation from \(A \) to \(B \). Then \(f \) is a 1-1 correspondence if and only if \(f \) is a 1-1 and onto function.

(b) Let \(f : A \to B \) be a function. Then \(f \) is 1-1 if and only

\[
\text{For all } a, c \in A : \quad f(a) = f(c) \implies a = c
\]

(c) A relation \(f \) from \(A \) to \(B \) is onto if and only if \(\text{Im } f = B \).

Proof.

\(f \) is a 1-1 correspondence

\[
\iff \quad \text{for all } a \in A \text{ there exists a unique } b \in B \text{ with } f(a) \text{, and}
\]

\[
\iff \quad \text{for all } d \in B \text{ there exists a unique } c \in A \text{ with } f(c) \text{} - \text{Definition of 1-1 correspondence}
\]

\(f \) is a function, and

\[
\iff \quad \text{for all } d \in B \text{ there exists a unique } c \in A \text{ with } c \in f \text{} - \text{Definition of a function}
\]

\(f \) is a function, and

\[
\iff \quad \text{for all } d \in B \text{ there exists at most one } c \in A \text{ with } c \in f \text{, and} \quad ^{-1.1.7}
\]

\[
\iff \quad \text{for all } d \in B \text{ there exists at least one } c \in A \text{ with } c \in f \text{}
\]

\[
\iff \quad f \text{ is a 1-1 and onto function} \quad - \text{Definition of 1-1 and onto}
\]
1.3. RELATIONS AND FUNCTIONS

(b) f is 1-1

\iff for all $b \in B$: there exists at most one $a \in A$ with $af b$ - definition of 1-1

\iff for all $b \in B$: there exists at most one $a \in A$ with $b = f(a)$ - definition of $f(a)$

\iff for all $b, a, c \in A$: $b = f(a)$ and $b = f(c) \implies a = c$ - definition of “exists at most one”

\iff for all $a, c \in A$: $f(a) = f(c) \implies a = c$

By definition of Im f:

$$\text{Im } f = \{ b \in B \mid \text{there exists } a \in A : af b \}.$$

Hence by 1.2.5

(*) $b \in \text{Im } f \iff b \in B$ and there exists $a \in A : af b$

Thus $b \in \text{Im } f$ implies $b \in B$ and so $\text{Im } f \subseteq B$. Thus

(**) $B = \text{Im } f$ if and only if $B \subseteq \text{Im } f$.

We have

$$B = \text{Im } f$$

\iff $B \subseteq \text{Im } f$ - (**)

\iff $b \in B \implies b \in \text{Im } f$ - Definition of subset

\iff for all $b \in B$: $b \in \text{Im } f$ - Definition of "for all $b \in B$"

\iff for all $b \in B$: $b \in B$ and there exists $a \in A : af b$ - (*)

\iff for all $b \in B$: there exists $a \in A : af b$

\iff f is onto - definition of onto

Definition 1.3.15. (a) Let A be a set. The identity function id_A on A is the function

$$id_A : A \to A, a \to a$$

So $id_A(a) = a$ for all $a \in A$.

(b) Let \(f : A \to B \) and \(g : B \to C \) be function. Then \(g \circ f \) is the function

\[
g \circ f : A \to C, a \to g(f(a))
\]

So \((g \circ f)(a) = g(f(a))\) for all \(a \in A\).

Exercises 1.3:

#1. Let \(a,b,c,d \) be objects. Prove that

\[
(a,b) = (c,d) \iff (a = c) \text{ and } (b = d)
\]

#2. Give an example of an 1-1 and onto relation which is not a function.

#3. Let \(F = (A,B,R) \) be a relation. Put

\[
S = \{ (b,a) \in B \times A \mid (a,b) \in R \}
\]

Note that \(G \) a relation from \(B \) and \(A \). Also, if \(a \in A \) and \(b \in B \), then \(bGa \) if and only if \(aFb \).

Show that \(F \) is a function if and only if \(G \) is 1-1 and onto.

#4. Let \(A \) and \(B \) be sets. Let \(A_1 \) and \(A_2 \) be subsets of \(A \) and \(B_1 \) and \(B_2 \) subsets of \(B \) such that \(A = A_1 \cup A_2, A_1 \cap A_2 = \emptyset, B = B_1 \cup B_2 \) and \(B_1 \cap B_2 = \emptyset \). Let \(\pi_1 : A_1 \to B_1 \) and \(\pi_2 : A_2 \to B_2 \) be bijections.(Recall that a bijection is a 1-1 and onto function.) Define

\[
\pi : A \to B, a \to \begin{cases}
\pi_1(a) & \text{if } a \in A_1 \\
\pi_2(a) & \text{if } a \in A_2
\end{cases}
\]

Show that \(\pi \) is a bijection.

#5. Prove that the given function is injective

(a) \(f : \mathbb{Z} \to \mathbb{Z}, f(x) = 2x \).

(b) \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 \).

(c) \(f : \mathbb{Z} \to \mathbb{Q}, f(x) = \frac{x}{7} \).

(d) \(f : \mathbb{R} \to \mathbb{R}, f(x) = -3x + 5 \).

#6. Prove that the given function is surjective.

(a) \(f : \mathbb{R} \to \mathbb{R}, f(x) = x^3 \).

(b) \(f : \mathbb{Z} \to \mathbb{Z}, f(x) = x - 4 \).

(c) \(f : \mathbb{R} \to \mathbb{R}, f(x) = -3x + 5 \).

(d) \(f : \mathbb{Z} \times \mathbb{Z} \to \mathbb{Q}, f(a,b) = \frac{a}{b} \) when \(b \neq 0 \) and \(f(a,b) = 0 \) when \(b = 0 \).

#7. (a) Let \(f : B \to C \) and \(g : C \to D \) be functions such that \(g \circ f \) is injective. Prove that \(f \) is injective.

(b) Give an example of the situation in part (a) in which \(g \) is not injective.
1.4 The Natural Numbers and Induction

A natural number is a non-negative integer. \(\mathbb{N} \) denotes the set of all natural numbers. So

\[
\mathbb{N} = \{0, 1, 2, 3 \ldots \}
\]

We do assume that familiarity with the basic properties of the natural numbers, like addition, multiplication and the order relation ‘\(\leq \)’.

A quick remark how to construct the natural numbers:

\[
\begin{align*}
0 &= \emptyset \\
1 &= \{0\} = 0 \cup \{0\} \\
2 &= \{0, 1\} = 1 \cup \{1\} \\
3 &= \{0, 1, 2\} = 2 \cup \{2\} \\
4 &= \{0, 1, 2, 3\} = 3 \cup \{3\} \\
&\vdots \\
n + 1 &= \{0, 1, 2, 3, \ldots, n\} = n \cup \{n\} \\
&\vdots
\end{align*}
\]

The relation \(\leq \) on \(\mathbb{N} \) can be defined by \(i \leq j \) if \(i \subseteq j \).

Definition 1.4.1. Let \(S \) be a subset of \(\mathbb{N} \). Then \(s \) is called a minimal element of \(S \) if \(s \in S \) and \(s \leq t \) for all \(t \in S \).

The following property of the natural numbers is part of our assumed properties of the integers and natural numbers (see Appendix C).

Well-Ordering Axiom: Let \(S \) be a non-empty subset of \(\mathbb{N} \). Then \(S \) has a minimal element

Using the Well-Ordering Axiom we now provide an important tool to prove statements which hold for all natural numbers:

Theorem 1.4.2 (Principal Of Mathematical Induction). Suppose that for each \(n \in \mathbb{N} \) a statement \(P(n) \) is given and that:

(i) \(P(0) \) is true.

(ii) If \(P(k) \) is true for some \(k \in \mathbb{N} \), then also \(P(k + 1) \) is true.

Then \(P(n) \) is true for all \(n \in \mathbb{N} \).
Proof. Suppose for a contradiction that \(P(n_0) \) is false for some \(n_0 \in \mathbb{N} \). Put

\[S := \{ s \in \mathbb{N} \mid P(s) \text{ is false} \} \]

Then \(n_0 \in S \) and so \(S \) is not empty. The Well-Ordering Axiom \(\text{C.4.2} \) now implies that \(S \) has a minimal element \(m \). Hence, by definition of a minimal element

\[(**): \quad m \in S \quad \text{and} \quad m \leq s \text{ for all } s \in S \]

By (i) \(P(0) \) is true and so \(0 \notin S \) and \(m \neq 0 \). Thus \(k := m - 1 \) is a non-negative integer and \(k < m \). If \(k \in S \), then (**) gives \(m \leq k \), a contradiction. Thus \(k \notin S \). By definition of \(S \) this means that \(P(k) \) is true. So by (ii), \(P(k + 1) \) is true. But \(k + 1 = (m - 1) + 1 = m \) and so \(P(m) \) is true. But \(m \in S \) and so \(P(m) \) is false. This contradiction show that \(P(n) \) is true for all \(n \in \mathbb{N} \).

\[\square \]

Theorem 1.4.3. Let \(n \in \mathbb{N} \) and \(S \) be a set with exactly \(n \) elements. Then \(S \) has exactly \(2^n \) subsets.

Proof. For \(n \in \mathbb{N} \), let \(P(n) \) be the statement

\[P(n): \quad \text{If } S \text{ is a set with exactly } n \text{ elements, then } S \text{ has exactly } 2^n \text{ subsets.} \]

If \(n = 0 \), then \(S = \emptyset \). So \(S \) has exactly one subset, namely \(\emptyset \). Since \(2^0 = 1 \) we see that \(P(0) \) holds.

Now suppose that \(P(k) \) holds and let \(S \) be a set with \(k + 1 \) elements. Fix \(s \in S \) and put \(T = S \setminus \{s\} \). Then \(T \) is a set with \(k \) elements.

Let \(A \subseteq S \). Then either \(s \in A \) or \(s \notin A \) but not both.

Suppose that \(s \notin A \). Then \(A \subseteq T \). By the induction assumption, \(T \) has \(2^k \) subsets and so there are \(2^k \) subsets of \(A \) with \(s \notin A \).

Suppose that \(s \in A \). Then \(A = \{s\} \cup B \) for a unique subset \(B \) of \(T \), namely \(B = A \setminus \{s\} \). By the induction assumption there are \(2^k \) choices for \(B \) and so there exists \(2^k \) subsets of \(S \) with \(s \in A \).

Since the number of subsets of \(A \) is the number of subsets of \(A \) containing \(s \) plus the number of subsets of \(A \) containing \(s \) we conclude that \(A \) has \(2^k + 2^k = 2^{k+1} \) subsets. Thus \(P(k + 1) \) holds.

We proved that \(P(0) \) holds and that \(P(k) \) implies \(P(k + 1) \) and so by the Principal Of Induction, \(P(n) \) holds for all \(n \in \mathbb{N} \).

\[\square \]

Theorem 1.4.4 (Principal Of Complete Induction). Suppose that for each \(n \in \mathbb{N} \) a statement \(P(n) \) is given and that

(i) If \(k \in \mathbb{N} \) and \(P(i) \) is true for all \(i \in \mathbb{N} \) with \(i < k \), then \(P(k) \) is true.

Then \(P(n) \) is true for all \(n \in \mathbb{N} \).

Proof. Let \(Q(n) \) be the statement that \(P(i) \) is true for all \(i \in \mathbb{N} \) with \(i < n \). Since there does not exits \(i \in \mathbb{N} \) with \(i < 0 \) we have
1.4. THE NATURAL NUMBERS AND INDUCTION

(*): \(Q(0) \) is true.

Suppose now that \(Q(k) \) is true, that is \(P(i) \) is a true for all \(i \in \mathbb{N} \) with \(i < k \). Then by [1], also \(P(k) \) is true. Hence \(P(i) \) is for all \(i \) in \(\mathbb{N} \) with \(i < k + 1 \). Thus \(Q(k + 1) \) is true. We proved

(**): If \(Q(k) \) is true for some \(k \in \mathbb{N} \), then also \(Q(k + 1) \) is true.

By [∗] and [∗∗] the assumptions of the Principal of Mathematical Induction are fulfilled. Hence \(Q(n) \) is true for all \(n \in \mathbb{N} \). Let \(n \in \mathbb{N} \). Then \(Q(n + 1) \) is true and since \(n < n + 1 \), \(P(n) \) is true. □

One last version of the induction principal:

Theorem 1.4.5. Suppose \(r \in \mathbb{Z} \) and for all \(n \in \mathbb{Z} \) with \(n \geq r \), a statement \(P(n) \) is given. Also assume that one of the following statements holds:

1. \(P(r) \) is true, and if \(k \in \mathbb{Z} \) such that \(k \geq r \) and \(P(k) \) is true, then \(P(k + 1) \) is true.

2. If \(k \in \mathbb{Z} \) with \(k \geq r \) and \(P(i) \) holds for all \(i \in \mathbb{Z} \) with \(r \leq i < k \), then \(P(k) \) holds.

Then \(P(n) \) holds for all \(n \in \mathbb{Z} \) with \(n \geq r \).

Proof. For \(n \in \mathbb{N} \) let \(Q(n) \) be the statement \(P(n + r) \). If [1] holds we can apply 1.4.2 to \(Q(n) \) and if [2] holds we can apply 1.4.4 to \(Q(n) \). In both cases we conclude that \(Q(n) \) holds for all \(n \in \mathbb{N} \). So \(P(n + r) \) holds for all \(n \in \mathbb{N} \) and \(P(n) \) holds for all \(n \in \mathbb{Z} \) with \(n \geq r \). □

Exercises 1.4:

#1. Prove that the sum of the first \(n \) positive integers is \(\frac{n(n+1)}{2} \).

Hint: Let \(P(k) \) be the statement:

\[1 + 2 + \ldots + k = \frac{k(k+1)}{2}. \]

#2. Let \(r \) be a real number, \(r \neq 1 \). Prove that for every integer \(n \geq 1 \),

\[1 + r + r^2 + \ldots + r^{n-1} = \frac{r^n - 1}{r - 1}. \]

#3. Prove that for every positive integer \(n \) there exists an integer \(k \) with \(2^{2n+1} + 1 = 2k \)

#4. Let \(B \) be a set of \(n \) elements.

(a) If \(n \geq 2 \), prove that the number of two-elements subsets of \(B \) is \(n(n-1)/2 \).

(b) If \(n \geq 3 \), prove that the number of three-element subsets of \(B \) is \(n(n-1)(n-2)/3! \).
#5. What is wrong with the following proof that all roses have the same color:

For a positive integer \(n \) let \(P(n) \) be the statement:

Let \(A \) be a set containing \(n \) roses. Then all roses in \(A \) have the same color.

If \(n = 1 \), then \(A \) only contains one rose and so certainly all roses in \(A \) have the same color. Thus \(P(1) \) is true.

Suppose now that \(P(k) \) is true, that is whenever \(B \) is a set of \(k \) roses then all roses in \(B \) have the same color. We need to show that \(P(k+1) \) is true. So let \(A \) be any set of \(k+1 \)-roses. Let \(x \) and \(y \) be distinct roses in \(A \). Consider the set \(X = A \setminus \{x\} \) (that is the set of roses in \(A \) different from \(x \)). Then \(X \) is set of \(k \) roses. By the induction assumption \(P(k) \) is true and so all roses in \(X \) have the same color. Similarly let \(Y = A \setminus \{y\} \), then all roses in \(Y \) have the same color. Now let \(z \) be a rose in \(A \) distinct from \(x \) and \(y \). Since \(z \) is distinct from \(x \), \(z \in X \); and since \(z \) is distinct from \(y \), \(z \in Y \). We will show that all roses in \(A \) have the same color as \(z \). Indeed let \(a \) be any rose in \(A \). If \(a \neq x \), then both \(a \) and \(z \) are in \(X \) and so \(a \) has the same color as \(z \). If \(a = x \) then both \(a \) and \(z \) are in \(Y \) and so again \(a \) and \(z \) have the same color. We proved that all roses in \(A \) have the same color as \(z \). Thus \(P(k+1) \) is true.

We proved that \(P(1) \) is true and that \(P(k) \) implies \(P(k+1) \). Hence by the Principal of Mathematical Induction, \(P(n) \) is true for all \(n \). Thus in any finite set of roses all the roses have the same color. So all roses have the same color.

#6. Let \(x \) be a real number greater than \(-1\). Prove that for every positive integer \(n \), \((1+x)^n \geq 1+nx\).

1.5 Equivalence Relations

Definition 1.5.1. Let \(\sim \) be a relation on a set \(A \) (that is a relation from \(A \) and \(A \)). Then

(a) \(\sim \) is called reflexive if \(a \sim a \) for all \(a \in A \).

(b) \(\sim \) is called symmetric if \(b \sim a \) for all \(a, b \in A \) with \(a \sim b \), that is if

\[
 a \sim b \quad \implies \quad b \sim a .
\]

(c) \(\sim \) is called transitive if \(a \sim c \) for all \(a, b, c \in A \) with \(a \sim b \) and \(b \sim c \), that is if

\[
 (a \sim b \quad \text{and} \quad b \sim c) \quad \implies \quad a \sim c
\]

(d) \(\sim \) is called an equivalence relation if \(\sim \) is reflexive, symmetric and transitive.

Example 1.5.2. (1) Consider the relation "\(\leq \)" on the real numbers:

- \(a \leq a \) for all real numbers \(a \) and so "\(\leq \)" is reflexive.
- \(1 \leq 2 \) but \(2 \nleq 1 \) and so "\(\leq \)" is not symmetric.
- If \(a \leq b \) and \(b \leq c \), then \(a \leq c \) and so "\(\leq \)" is transitive.
- Since "\(\leq \)" is not symmetric, "\(\leq \)" is not an equivalence relation.
(2) Consider the relation \(= \) on any set \(A \).

\[a = a \] and so \(= \) is reflexive.

If \(a = b \), then \(b = a \) and so \(= \) is symmetric.

If \(a = b \) and \(b = c \), then \(a = c \) and so \(= \) is transitive.

\(= \) is reflexive, symmetric and transitive and so an equivalence relation.

(3) Consider the relation \(\neq \) on any set \(A \).

\[a \neq a \] and so if \(A \neq \emptyset \), \(\neq \) is not reflexive.

Suppose \(A \) has at least two distinct elements \(a, b \). Then

\[a \neq b \quad \text{and} \quad b \neq a \quad \text{but not} \quad (a \neq a) \]

So \(\neq \) is not transitive.

Definition 1.5.3. Let \(\sim \) be an equivalence relation on the set \(A \) and let \(n \in \mathbb{Z} \).

(a) For \(a \in A \) we define \([a]_{\sim} := \{ b \in A \mid a \sim b \} \). We often just write \([a]_{\sim} \) for \([a]_{\sim} \). \([a]_{\sim} \) is called the equivalence class of \(a \) with respect to \(\sim \).

(b) \(A/\sim := \{ [a]_{\sim} \mid a \in A \} \). So \(A/\sim \) is the set of equivalence classes with respect to \(\sim \).

(c) Let \(a \in \mathbb{Z} \). Then \([a]_{n} \) is the equivalence class \(a \) with respect to \(\equiv \pmod{n} \). \([a]_{n} \) is called the congruence class of \(a \) modulo \(n \).

(d) \(\mathbb{Z}_{n} := \mathbb{Z}/a \equiv b \pmod{n}' \). So \(\mathbb{Z}_{n} = \{ [a]_{n} \mid a \in \mathbb{Z} \} \) is the set of congruence classes modulo \(n \).

Example 1.5.4. (1) Consider the relation \(\equiv \pmod{2} \):

\[[1]_{2} = \{ b \in \mathbb{Z} \mid 1 \equiv b \pmod{2} \} = \{ b \in \mathbb{Z} \mid b \text{ is odd} \} \]

and so \([1]_{2}\) is the set of odd integers.

\[[0]_{2} = \{ b \in \mathbb{Z} \mid 0 \equiv b \pmod{2} \} = \{ b \in \mathbb{Z} \mid b \text{ is even} \} \]

and so \([0]_{2}\) is the set of odd integers.

In general:

\[[a]_{2} = \{ b \in \mathbb{Z} \mid a \equiv b \pmod{2} \} = \begin{cases} \{ b \in \mathbb{Z} \mid b \text{ is even} \} & \text{if } a \text{ is even} \\ \{ b \in \mathbb{Z} \mid b \text{ is odd} \} & \text{if } a \text{ is odd} \end{cases} \]

So

\[\mathbb{Z}_{2} = \left\{ \{ n \in \mathbb{Z} \mid n \text{ is even} \}, \{ n \in \mathbb{Z} \mid n \text{ is odd} \} \right\} = \{ [0]_{2}, [1]_{2} \} \].
Consider the relation \(\equiv \pmod{5} \): We have
\[
0 \equiv b \pmod{5} \iff 5 \mid b - 0 \iff 5 \mid b \iff b = 5k \text{ for some } k \in \mathbb{Z}
\]
so
\[
[0]_5 = \{ b \in \mathbb{Z} \mid 0 \equiv b \pmod{5} \} = \{ 5k \mid k \in \mathbb{Z} \} = \{ 0, 5, 10, 15, 20, \ldots, -5, -10, -15, -20, \ldots \}
\]
Also
\[
1 \equiv b \pmod{5} \iff 5 \mid b - 1 \iff b - 1 = 5k \text{ for some } k \in \mathbb{Z} \iff b = 5k + 1 \text{ for some } k \in \mathbb{Z}
\]
and so
\[
[1]_5 = \{ b \in \mathbb{Z} \mid 1 \equiv b \pmod{5} \} = \{ 5k + 1 \mid k \in \mathbb{Z} \} = \{ 1, 6, 11, 16, 21, \ldots, -4, -9, -14, -19, \ldots \}
\]
Similarly,
\[
[2]_5 = \{ b \in \mathbb{Z} \mid 2 \equiv b \pmod{5} \} = \{ 5k + 2 \mid k \in \mathbb{Z} \} = \{ 2, 7, 12, 17, 22, \ldots, -3, -8, -13, -18, \ldots \}
\]
\[
[3]_5 = \{ b \in \mathbb{Z} \mid 3 \equiv b \pmod{5} \} = \{ 5k + 3 \mid k \in \mathbb{Z} \} = \{ 3, 8, 13, 18, 23, \ldots, -2, -7, -12, -17, \ldots \}
\]
\[
[4]_5 = \{ b \in \mathbb{Z} \mid 4 \equiv b \pmod{5} \} = \{ 5k + 4 \mid k \in \mathbb{Z} \} = \{ 4, 9, 14, 19, 24, \ldots, -1, -6, -11, -16, \ldots \}
\]
\[
[5]_5 = \{ b \in \mathbb{Z} \mid 5 \equiv b \pmod{5} \} = \{ 5k + 5 \mid k \in \mathbb{Z} \} = \{ 5, 10, 15, 20, 25, \ldots, 0, -5, -10, -15, \ldots \} = [0]_5
\]
\[
[6]_5 = \{ b \in \mathbb{Z} \mid 6 \equiv b \pmod{5} \} = \{ 5k + 6 \mid k \in \mathbb{Z} \} = \{ 6, 11, 16, 21, 26, \ldots, 1, -4, -9, -14, \ldots \} = [1]_5
\]
So it seems that
\[
\mathbb{Z}_5 = \{ [0]_5, [1]_5, [2]_5, [3]_5, [4]_5 \}.
\]
Later (see 2.4.15(b)) we will give a rigorous proof for this.

Consider the relation \(\equiv \pmod{0} \). By 2.4.6 \(a \equiv b \pmod{0} \) if and only if \(a = b \).

So
\[
[a]_0 = \{ a \}
\]
and
\[
\mathbb{Z}_0 = \{ \{ a \} \mid a \in \mathbb{Z} \}.
\]
1.5. EQUIVALENCE RELATIONS

(4) By 2.4.6 \(a \equiv b \pmod{1} \) for all \(a, b \). Thus

So

\[[a]_0 = \mathbb{Z} \]

and

\[\mathbb{Z}_1 = \{ \mathbb{Z} \} \]

(5) Consider the relation \(\sim \) on the set \(A = \{1, 2, 3\} \). Then \(\sim \) is an equivalence relation. Also

\[[1]_\sim = \{ a \in A \mid 1 \sim a \} = \{1, 2\} \]

\[[2]_\sim = \{ a \in A \mid 2 \sim a \} = \{1, 2\} \]

\[[3]_\sim = \{ a \in A \mid 3 \sim a \} = \{3\} \]

and so

\[A/\sim = \{ \{1, 2\}, \{3\} \} \]

Theorem 1.5.5. Let \(\sim \) be an equivalence relation on the set \(A \) and \(a, b \in A \). Then the following statements are equivalent:

(a) \(a \sim b \).
(b) \(b \in [a] \).
(c) \([a] \cap [b] \neq \emptyset \).
(d) \([a] = [b] \).
(e) \(a \in [b] \).
(f) \(b \sim a \).

Proof. (a) \(\implies \) (b): Suppose that \(a \sim b \). Since \([a] = \{ b \in A \mid a \sim b \} \) we conclude that \(b \in [a] \).

(b) \(\implies \) (c): Suppose that \(b \in [a] \). Since \(\sim \) is reflexive, we get \(b \sim b \) and so \(b \in [b] \). Thus \(b \in [a] \cap [b] \) and \([a] \cap [b] \neq \emptyset \).

(c) \(\implies \) (d): Suppose \([a] \cap [b] \neq \emptyset \). Then there exists \(c \in [a] \cap [b] \).

We will first show that \([a] \subseteq [b] \). So let \(d \in [a] \). Then \(a \sim d \). Since \(c \in [a] \) and \([a] = \{ e \in A \mid a \sim e \} \) we have \(a \sim c \) and since \(\sim \) is symmetric we conclude that \(c \sim a \). As \(a \sim d \) and \(\sim \) is transitive, this gives \(c \sim d \). From \(c \in [b] \) we get \(b \sim c \). Since \(c \sim d \) and \(\sim \) is transitive, we infer that \(b \sim d \) and so \(d \in [b] \). Thus \([a] \subseteq [b] \).
A similar argument shows that \([b] \subseteq [a]\). We proved that \([a] \subseteq [b]\) and \([b] \subseteq [a]\) and so \([a] = [b]\)
by \(1.2.3\).

\(\[\] \Rightarrow \[\]:\) Since \(a\) is reflexive, \(a \sim a\) and so \(a \in [a]\). As \([a] = [b]\) we get \(a \in [b]\).

\(\[\] \Rightarrow \[\]:\) By definition \([b] = \{e \in A \mid b \sim e\}\). Since \(a \in [b]\) we conclude that \(b \sim a\).

\(\[\] \Rightarrow \[\]:\) Since \(\sim\) is symmetric, \(b \sim a\) implies \(a \sim b\).

\(\square\)

Exercises 1.5:

#1. Let \(f : A \to B\) be a function and define a relation \(\sim\) on \(A\) by

\[u \sim v \iff f(u) = f(v). \]

Prove that \(\sim\) is an equivalence relation.

#2. Let \(A = \{1, 2, 3\}\). Use the definition of a relation (see \(1.3.5(b)\)) to exhibit a relation on \(A\) with the stated properties.

(a) Reflexive, not symmetric, not transitive.

(b) Symmetric, not reflexive, not transitive.

(c) Transitive, not reflexive, not symmetric.

(d) Reflexive and symmetric, not transitive.

(e) Reflexive and transitive, not symmetric.

(f) Symmetric and transitive, not reflexive.

#3. Let \(\sim\) be the relation on the set \(\mathbb{R}^*\) of non-zero real numbers defined by

\[a \sim b \iff \frac{a}{b} \in \mathbb{Q}. \]

Prove that \(\sim\) is an equivalence relation.

#4. Let \(\sim\) be a symmetric and transitive relation on a set \(A\). What is wrong with the following ‘proof’ that \(\sim\) is reflexive:

\(a \sim b\) implies \(b \sim a\) by symmetry; then \(a \sim b\) and \(b \sim a\) imply that \(a \sim a\) by transitivity.
Chapter 2

Rings

2.1 Definitions and Examples

Definition 2.1.1. A ring is a triple \((R, +, \cdot)\) such that

(i) \(R\) is a set;

(ii) \(+\) is a function (called ring addition) and \(R \times R\) is a subset of the domain of \(+\). For \((a, b) \in R \times R\), \(a + b\) denotes the image of \((a, b)\) under \(+\);

(iii) \(\cdot\) is a function (called ring multiplication) and \(R \times R\) is a subset of the domain of \(\cdot\). For \((a, b) \in R \times R\), \(a \cdot b\) (and also \(ab\)) denotes the image of \((a, b)\) under \(\cdot\);

and such that the following eight statement hold:

(Ax 1) \(a + b \in R\) for all \(a, b \in R\); [closure of addition]

(Ax 2) \(a + (b + c) = (a + b) + c\) for all \(a, b, c \in R\); [associative addition]

(Ax 3) \(a + b = b + a\) for all \(a, b \in R\). [commutative addition]

(Ax 4) there exists an element in \(R\), denoted by \(0_R\) and called ‘zero \(R\)’, such that \(a = a + 0_R = a\) and \(a = 0_R + a\) for all \(a \in R\); [additive identity]

(Ax 5) for each \(a \in R\) there exists an element in \(R\), denoted by \(-a\) and called ‘negative \(a\)’, such that \(a + (-a) = 0_R\); [additive inverses]

(Ax 6) \(ab \in R\) for all \(a, b \in R\); [closure for multiplication]

(Ax 7) \(a(bc) = (ab)c\) for all \(a, b, c \in R\); [associative multiplication]

(Ax 8) \(a(b + c) = ab + ac\) and \((a + b)c = ac + bc\) for all \(a, b, c \in R\). [distributive laws]

In the following we will usually say “Let \(R\) be a ring” for “Let \((R, +, \cdot)\) be a ring.”
Definition 2.1.2. Let R be a ring. Then R is called commutative if

(Ax 9) $ab = ba$ for all $a, b \in R.$ \[\text{[commutative multiplication]}\]

Definition 2.1.3. Let R be a ring. We say that R is a ring with identity if there exists an element, denoted by 1_R and called ‘one R’, such that

(Ax 10) $a = 1_R \cdot a$ and $a = a \cdot 1_R \quad \text{for all } a \in R.$ \[\text{[multiplicative identity]}\]

Example 2.1.4. (a) $(\mathbb{Z}, +, \cdot)$ is a commutative ring with identity.

(b) $(\mathbb{Q}, +, \cdot)$ is a commutative ring with identity.

(c) $(\mathbb{R}, +, \cdot)$ is a commutative ring with identity.

(d) $(\mathbb{C}, +, \cdot)$ is a commutative ring with identity.

(e) Let $\mathbb{Z}_2 = \{0, 1\}$ and define an addition \oplus and a multiplication \odot on \mathbb{Z}_2 by

\[
\begin{array}{c|cc}
\oplus & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{array}
\quad \text{and} \quad
\begin{array}{c|cc}
\odot & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{array}
\]

Then $(\mathbb{Z}_2, \oplus, \odot)$ is a commutative ring with identity.

(f) Let $2\mathbb{Z}$ be the set of even integers. Then $(2\mathbb{Z}, +, \cdot)$ is a commutative ring without a multiplicative identity.

(g) Let n be integer with $n > 1$. The set $M_n(\mathbb{R})$ of $n \times n$ matrices with coefficients in \mathbb{R} together with the usual addition and multiplication of matrices is a non-commutative ring with identity.

Example 2.1.5. Let $R = \{0, 1\}$ and $a, b \in R$. Define an addition and multiplication on R by

\[
\begin{array}{c|cc}
+ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & a \\
\end{array}
\quad \text{and} \quad
\begin{array}{c|cc}
\cdot & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & b \\
\end{array}
\]

For which values of a and b is $(R, +, \cdot)$ a ring?

Note first that 0 is additive identity, so $0_R = 0$.

Suppose that $a = 1$. Then $1 + x = 1 \neq 0_R$ for all $x \in R$ and so 1 does not have a additive inverse. Hence R is not a ring.

Suppose now that $a = 0$.

Assume that $b = 1$. Then $(R, +, \cdot)$ is $(\mathbb{Z}_2, \oplus, \odot)$ and so R is ring.
Assume that \(b = 0 \). Then then \(xy = 0 \) for all \(x, y \in R \). Note also that \(0 + 0 = 0 \). It follows that Axioms 6-8 hold, indeed all expressions evaluate to 0. Axiom 1-5 hold since the addition is the same as in \(\mathbb{Z}_2 \). So \(R \) is a ring.

In both cases \(R \) is commutative. If \(b = 1 \), then 1 is an identity. If \(b = 0 \), \(R \) does not have an identity.

Example 2.1.6. Let \(R = \{0, 1\} \) Define an addition and multiplication on \(R \) by

\[
\begin{array}{c|cc}
\oplus & 0 & 1 \\
\hline
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{array} \quad \text{and} \quad \begin{array}{c|cc}
\odot & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 1 \\
\end{array}
\]

Is \((R, \oplus, \odot) \) a ring?

Note that 1 is an additive identity, so \(0_R = 1 \). Also 0 is a multiplicative identity. So \(1_R = 0 \).

Using the symbols \(0_R \) and \(1_R \) we can write the addition and multiplication table as follows:

\[
\begin{array}{c|cc}
\oplus & 0_R & 1_R \\
\hline
0_R & 0_R & 1_R \\
1_R & 1_R & 0_R \\
\end{array} \quad \text{and} \quad \begin{array}{c|cc}
\odot & 0_R & 1_R \\
\hline
0_R & 0_R & 0_R \\
1_R & 1_R & 1_R \\
\end{array}
\]

Indeed, most entries in the tables are determined by the fact that \(0_R \) and \(1_R \) are the additive and multiplicative identity, respectively. Also \(1_R \oplus 1_R = 0 \oplus 0 = 1 = 0_R \) and \(0_R \odot 0_R = 1 \odot 1 = 1 = 0_R \).

Observe now that the new tables are the same as for \(\mathbb{Z}_2 \). So \((R, \oplus, \odot) \) is a ring.

Theorem 2.1.7. Let \(R \) and \(S \) be rings. Recall from 1.3.3 that \(R \times S = \{(r, s) \mid r \in R, s \in S\} \). Define an addition and multiplication on \(R \times S \) by

\[
(r, s) + (r', s') = (r + r', s + s')
\]

\[
(r, s)(r', s') = (rr', ss')
\]

for all \(r, r' \in R \) and \(s, s' \in S \). Then

(a) \(R \times S \) is a ring;

(b) \(0_{R \times S} = (0_R, 0_S) \);

(c) \(-(r, s) = (-r, -s) \) for all \(r \in R, s \in S \);

(d) if \(R \) and \(S \) are both commutative, then so is \(R \times S \);

(e) if both \(R \) and \(S \) have an identity, then \(R \times S \) has an identity and \(1_{R \times S} = (1_R, 1_S) \).

Proof. See Exercise 2.1.\#2.
Example 2.1.8. Determine the addition and multiplication table of the ring \(\mathbb{Z}_2 \times \mathbb{Z}_2 \).

Recall from 2.1.4(b) that \(\mathbb{Z}_2 = \{0, 1\} \). So

\[
\mathbb{Z}_2 \times \mathbb{Z}_2 = \{(0,0), (0,1), (1,0), (1,1)\}
\]

and

\[
\begin{array}{c|cccc}
+ & (0,0) & (0,1) & (1,0) & (1,1) \\
\hline
(0,0) & (0,0) & (0,1) & (1,0) & (1,1) \\
(0,1) & (0,1) & (0,0) & (1,1) & (1,0) \\
(1,0) & (1,0) & (1,1) & (0,0) & (0,1) \\
(1,1) & (1,1) & (1,0) & (0,1) & (0,0) \\
\end{array}
\]

Exercises 2.1:

#1. Let \(E = \{0, e, b, c\} \) with addition and multiplication defined by the following tables. Assume associativity and distributivity and show that \(R \) is a ring with identity. Is \(R \) commutative?

\[
\begin{array}{c|cccc}
+ & 0 & e & b & c \\
\hline
0 & 0 & e & b & c \\
e & e & 0 & c & b \\
b & b & c & 0 & e \\
c & c & b & e & 0 \\
\end{array}
\]

\[
\begin{array}{c|cccc}
\cdot & 0 & e & b & c \\
\hline
0 & 0 & 0 & 0 & 0 \\
e & 0 & e & b & c \\
b & b & b & b & b \\
c & c & c & c & c \\
\end{array}
\]

#2. Prove Theorem 2.1.7.

2.2 Elementary Properties of Rings

Lemma 2.2.1. Let \(R \) be ring and \(a, b \in R \). Then \((a + b) + (-b) = a \).
2.2. ELEMENTARY PROPERTIES OF RINGS

Proof.

\[(a + b) + (−b) = a + (b + (−b)) \quad \text{Ax 2} \]
\[a + 0_R \quad \text{Ax 5} \]
\[a \quad \text{Ax 4} \]

Theorem 2.2.2 (Additive Cancellation Law). Let \(R \) be ring and \(a, b, c \in R \). Then

\[
a = b \iff c + a = c + b \]
\[
\iff a + c = b + c \]

Proof. “First Statement \(\iff \) Second Statement”: Suppose that \(a = b \). Then \(c + a = c + b \) by the Principal of Substitution \[1.1.1\]

“Second Statement \(\iff \) Third Statement”: Suppose that \(c + a = c + b \). Then \[\text{Ax 3}\] applied to each side of the equation gives \(a + c = b + c \).

“Third Statement \(\iff \) First Statement”: Suppose that \(a + c = b + c \). Adding \(-c\) to both sides of the equation gives \((a + c) + (−c) = (b + c) + (−c) \). Applying \[2.2.1\] to both sides gives \(a = b \).

Definition 2.2.3. Let \(R \) be a ring and \(c \in R \). Then \(c \) is called an additive identity of \(R \) if

\[
a + c = a \quad \text{and} \quad c + a = a \]

for all \(a \in R \).

Corollary 2.2.4 (Additive Identity Law). Let \(R \) be a ring and \(a, c \in R \). Then the following three statements are equivalent:

\[
a = 0_R \]
\[
\iff c + a = c \]
\[
\iff a + c = c \]

In particular, \(0_R \) is the unique additive identity of \(R \).

Proof. Put \(b = 0_R \). Then by \[\text{Ax 4}\] \(c + b = c \) and \(b + c = c \). Thus by the Principal of Substitution:

\[
a = 0_R \iff a = b \]
\[
c + a = c \iff c + a = c + b \]
\[
a + c = c \iff a + c = b + c \]

So the Corollary follows from the Cancellation Law \[2.2.2\].
Definition 2.2.5. Let R be a ring and $c \in R$. An additive inverse of c is an element a in R with $c + a = 0_R$.

Corollary 2.2.6 (Additive Inverse Law). Let R be a ring and $a, c \in R$. Then

\[
\begin{align*}
a &= -c \\
\iff c + a &= 0_R \\
\iff a + c &= 0_R
\end{align*}
\]

In particular, $-c$ is the unique additive inverse of c.

Proof. Put $b = -c$. By **Ax 5** $c + b = 0_R$ and so by **Ax 3** $b + c = 0_R$. Thus by the Principal of Substitution:

\[
\begin{align*}
a &= -c \\
\iff c + a &= 0_R \\
\iff a + c &= 0_R \\
\end{align*}
\]

So the Corollary follows from the Cancellation Law 2.2.2.

Definition 2.2.7. Let R be a ring and $a, b \in R$. Then $a - b := a + (-b)$.

Proposition 2.2.8. Let R be a ring and $a, b, c \in R$. Then

\[
\begin{align*}
(a) &\quad -0_R = 0_R \\
(b) &\quad a - 0_R = a. \\
(c) &\quad a \cdot 0_R = 0_R \cdot a. \\
(d) &\quad a \cdot (-b) = -(ab) = (-a) \cdot b. \\
(e) &\quad -(a) = a. \\
(f) &\quad a - b = 0_R \text{ if and only if } a = b. \\
(g) &\quad -(a + b) = (-a) + (-b) = (-a) - b. \\
(h) &\quad -(a - b) = (-a) + b = b - a. \\
(i) &\quad (-a) \cdot (-b) = ab. \\
(j) &\quad a \cdot (b - c) = ab - ac \text{ and } (a - b) \cdot c = ac - bc. \\
(k) &\quad (-1_R) \cdot a = -a = a \cdot (-1_R). \\
\end{align*}
\]

Proof.

(a) By **Ax 4** $0_R + 0_R = 0_R$ and so by the Additive Inverse Law 2.2.6 $0_R = -0_R$.

(b) $a - 0_R \overset{\text{Def}}{=} a + (-0_R) \overset{(a)}{=} a + 0_R \overset{\text{Ax 4}}{=} a$.

(c) We compute

\[
a \cdot 0_R \overset{\text{Ax 4}}{=} a \cdot (0_R + 0_R) \overset{\text{Ax 8}}{=} a \cdot 0_R + a \cdot 0_R,
\]

and so by the Additive Identity Law 2.2.4 $a \cdot 0_R = 0_R$. Similarly $0_R \cdot a = 0_R$.

We have
\[ab + a \cdot (-b) \overset{\text{Ax 8}}{=} a \cdot (b + (-b)) \overset{\text{Def}}{=} -b \cdot 0_R \overset{\text{c}}{=} 0_R. \]
So by the Additive Inverse Law 2.2.6 \(-ab = a \cdot (-b)\).

By \text{Ax 5}, \(a + (-a) = 0_R\) and so by the Additive Inverse Law 2.2.6 \(a = -(-a)\).

\[
a - b = 0_R
\]
\[
\iff a + (-b) = 0_R \quad \text{-- definition of -}
\]
\[
\iff a = -(-b) \quad \text{-- Additive Inverse Law 2.2.6}
\]
\[
\iff a = b \quad \text{-- c}
\]

\[
(a + b) + ((-a) + (-b)) \overset{\text{Ax 3}}{=} (b + a) + ((-a) + (-b)) \overset{\text{Ax 2}}{=} ((b + a) + (-a)) + (-b) \overset{\text{2.2.1}}{=} b + (-b) \overset{\text{Ax 5}}{=} 0_R.
\]
and so by the Additive Inverse Law 2.2.6 \(-a + b = (-a) + (-b)\). By definition of "-", \((-a) + (-b) = (-a) - b\).

\[
-(a - b) \overset{\text{Def}}{=} -(a + (-b)) \overset{\text{e}}{=} ((-a) + (-(-b))) \overset{\text{Ax 3}}{=} b + (-a) \overset{\text{Def}}{=} b - a.
\]

\[
(-a) \cdot (-b) \overset{\text{d}}{=} a \cdot (-(-b)) \overset{\text{d}}{=} a \cdot b.
\]

\[
a \cdot (b - c) \overset{\text{d}}{=} a \cdot (b + (-c)) \overset{\text{Ax 8}}{=} a \cdot b + a \cdot (-c) \overset{\text{d}}{=} ab + (-ac) \overset{\text{d}}{=} ab - ac.
\]
Similarly \((a - b) \cdot c = ab - ac\).

Suppose now that \(R\) has an additive identity. Then
\[
a + ((-1_R) \cdot a) \overset{\text{Ax 10}}{=} 1_R \cdot a + (-1_R) \cdot a \overset{\text{Ax 8}}{=} (1_R + (-1_R)) \cdot a \overset{\text{Ax 5}}{=} 0_R \cdot a \overset{\text{c}}{=} 0_R.
\]
Hence by the Additive Inverse Law 2.2.6 \(-a = (-1_R) \cdot a\). Similarly, \(-a = a \cdot (-1_R)\).

\[\begin{align*}
\text{Lemma 2.2.9.} & \quad \text{Let } R \text{ be ring and } a, b, c \in R. \text{ Then } \\
& \quad \begin{array}{ll}
\text{c} & = b - a \\
\iff & c + a = b \\
\iff & a + c = b
\end{array}
\end{align*}\]
Proof.

\[a + c = b \]
\[\iff c + a = b \quad - \text{Ax 3} \]
\[\iff (c + a) + (-a) = b + (-a) \quad - \text{Additive Cancellation Law 2.2.2} \]
\[\iff c = b - a \quad - \text{2.2.1 and Definition of } b - a \]

\[\square \]

2.3 The General Associative Commutative and Distributive Laws in Rings

Definition 2.3.1. Let \(R \) be a ring, \(n \) a positive integer and \(a_1, a_2, \ldots, a_n \in R \).

(a) For \(k \in \mathbb{Z} \) with \(1 \leq k \leq n \) define \(\sum_{i=1}^{k} a_i \) inductively by

(i) \(\sum_{i=1}^{1} a_i = a_1 \); and

(ii) \(\sum_{i=1}^{k+1} a_i = \left(\sum_{i=1}^{k} a_i \right) + a_{k+1} \).

so \(\sum_{i=1}^{n} a_i = \left(\ldots ((a_1 + a_2) + a_3) + \ldots + a_{n-2} \right) + a_{n-1} \) + \(a_n \).

(b) Inductively, we say that \(z \) is a sum of \((a_1, \ldots, a_n) \) in \(R \) provided that one of the following holds:

1. \(n = 1 \) and \(z = a_1 \).
2. \(n > 1 \) and there exist an integer \(k \) with \(1 \leq k < n \) and \(x, y \in R \) such that \(x \) is a sum of \((a_1, \ldots, a_k) \) in \(R \), \(y \) is a sum of \((a_{k+1}, a_{k+2}, \ldots, a_n) \) in \(R \) and \(z = x + y \).

(c) \(\prod_{i=1}^{k} a_n \) is defined similarly as in (a), just replace ‘\(\sum \)’ by ‘\(\prod \)’ and ‘\(+ \)’ by ‘\(\cdot \)’.

(d) A product of \((a_1, \ldots, a_n) \) in \(R \) is defined similarly as in (b), just replace ‘sum’ by ‘product’ and ‘\(+ \)’ by ‘\(\cdot \)’.

(e) Let \(a \in R \). Then \(a^n := \prod_{i=1}^{n} a \left(\begin{array}{c} a \ldots a \\ n \text{-times} \end{array} \right) \).

(f) If \(R \) has an identity and \(a \in R \), then \(a^0 = 1_R \).

We will also write \(a_1 + a_2 + \ldots + a_n \) for \(\sum_{i=1}^{n} a_i \) and \(a_1 a_2 \ldots a_n \) for \(\prod_{i=1}^{n} a_i \).

Example 2.3.2. Let \(R \) be a ring and \(a, b, c, d \in R \). Find all sums of \((a, b, c, d) \).
2.3. THE GENERAL ASSOCIATIVE COMMUTATIVE AND DISTRIBUTIVE LAWS IN RINGS

- a is the only sum of (a).
- $a + b$ is the only sum of (a, b).
- $a + (b + c)$ and $(a + b) + c$ are the sums of (a, b, c).
- $a + (b + (c + d)), a + ((b + c) + d), (a + b) + (c + d), (a + (b + c)) + d$ and $((a + b) + c) + d$ are the sums of (a, b, c, d).

Theorem 2.3.3 (General Associative Law, GAL). Let R be a ring and a_1, a_2, \ldots, a_n elements of R. Then any sum of (a_1, a_2, \ldots, a_n) in R is equal to $\sum_{i=1}^{n} a_i$ and any product of (a_1, a_2, \ldots, a_n) is equal to $\prod_{i=1}^{n} a_i$.

Proof. See D.1.3

Theorem 2.3.4 (General Commutative Law, GCL). Let R be a ring, $a_1, a_2, \ldots, a_n \in R$ and $f : \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ a 1-1 and onto function.

(a) $\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_{f(i)}$.

(b) If R is commutative, then $\prod_{i=1}^{n} a_i = \prod_{i=1}^{n} a_{f(i)}$.

Proof. See D.2.2

Theorem 2.3.5 (General Distributive Law, GDL). Let R be a ring and $a_1, \ldots, a_n, b_1, \ldots, b_m \in R$. Then

$$
\left(\sum_{i=1}^{n} a_i \right) \cdot \left(\sum_{j=1}^{m} b_j \right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_i b_j \right)
$$

Proof. See D.3.2

Example 2.3.6. Let R be a ring and a, b, c, d, e in R. By the General Associative Law:

$$a + b + c + d = (a + (b + c)) + d = (a + b) + (c + d) = a + ((b + c) + d) = a + (b + (c + d)).$$

By the General Commutative Law:

$$a + b + c + d + e = d + c + a + b + e = b + a + c + d + e.$$

By the General Distributive Law:

$$(a + b + c)(d + e) = (ad + ae) + (bd + be) + (cd + ce).$$
2.4 Divisibility and Congruence in Rings

Definition 2.4.1. Let \(R \) be ring and \(a, b \in R \). Then we say that \(a \) divides \(b \) in \(R \) and write \(a \mid b \) if there exists \(c \in R \) with \(b = ac \).

Example 2.4.2. (1) Does \(7 \mid 133 \) in \(\mathbb{Z} \)?
Yes, since \(133 = 7 \cdot 19 \).

(2) Does \(2 \mid 3 \) in \(\mathbb{Z} \)?
No since \(2 \cdot k \) is even, \(3 \neq 2k \) for all \(k \in \mathbb{Z} \).

(3) Does \(2 \mid 3 \) in \(\mathbb{Q} \)?
Yes, since \(3 = 2 \cdot \frac{3}{2} \).

(4) Does \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\mid
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
\]
in \(M_2(\mathbb{R}) \)?
Yes, since \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\cdot
\begin{bmatrix}
0 & 1 \\
0 & 0
\end{bmatrix}
= \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.
\]

(5) Does \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\mid
\begin{bmatrix}
0 & 0 \\
1 & 0
\end{bmatrix}
\]
in \(M_2(\mathbb{R}) \)?
No, since \[
\begin{bmatrix}
1 & 0 \\
0 & 0
\end{bmatrix}
\cdot
\begin{bmatrix}
a & b \\
c & d
\end{bmatrix}
= \begin{bmatrix} a & b \\ c & d \end{bmatrix} \neq \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}
\]
for all \(a, b, c, d \in \mathbb{R} \).

Lemma 2.4.3. Let \(R \) be a ring and \(r \in R \).

(a) \(r \mid 0_R \).

(b) \(0_R \mid r \) if and only if \(r = 0_R \).

Proof. (a) By 2.2.8(c), \(0_R = r \cdot 0_R \) and so \(r \mid 0_R \).

(b) By (a) applied with \(r = 0_R \) we have \(0_R \mid 0_R \).
Suppose now that \(r \in R \) with \(0_R \mid r \). Then there exists \(s \in R \) with \(r = 0_R s \) and so by 2.2.8(c), \(r = 0_R \).

Lemma 2.4.4. Let \(R \) be a ring and \(a, b, c, u, v \in R \).

(a) \mid is transitive, that is if \(a \mid b \) and \(b \mid c \), then \(a \mid c \).

(b) \(a \mid b \iff a \mid (-b) \iff (-a) \mid (-b) \iff (-a) \mid b \).
(c) Suppose that $a|b$ and $a|c$. Then

$$a|(b + c), \ a|(b - c), a|(bu + c), \ a|bu - c, \ a|(bu + cv), \ \text{and} \ a|(bu - c).$$

Proof. (a) Let $a, b, c \in R$ such that $a|b$ and $b|c$. Then by definition of divide there exist r and s in R with

\[
\begin{align*}
(*) \quad & b = ar \quad \text{and} \quad c = bs. \\
\end{align*}
\]

Hence

\[
\begin{align*}
c & \overset{\text{Ax 2}}{=} bs \overset{(ar)s}{=} (ar)s. \\
\end{align*}
\]

Since R is closed under multiplication, $rs \in R$ and so $a|c$ by definition of divide.

(b) We will first show

\[
\begin{align*}
(**) \quad & a|b \quad \Rightarrow \quad a|(-b) \quad \text{and} \quad (-a)|b \\
\end{align*}
\]

Suppose that a divides b. Then by definition of “divide” there exists $r \in R$ with $b = ar$. Thus

\[
\begin{align*}
-ar & \overset{2.2.8[4]}{=} a(-r) \quad \text{and} \quad b = ar \overset{2.2.8[1]}{=} (-a)(-r) \\
\end{align*}
\]

By Ax 5, $-r \in R$ and so $a|(-b)$ and $(-a)|b$ by definition of “divide”. So $(**)$ holds.

Suppose $a|(-b)$, then by $(**)$ applied with $-b$ in place of b, $(-a)|(-b)$.

Suppose that $(-a)|(-b)$. Then by $(**)$ applied with $-a$ and $-b$ in place of a and b, $(-a)|(-b)$. By $2.2.8[e]$, $-(-a) = a$ and so $a|b$.

(c) Suppose that $a|b$ and $a|c$. Then by definition of divide there exist r and s in R with

\[
\begin{align*}
(* *) \quad & b = ar \quad \text{and} \quad c = as \\
\end{align*}
\]

Thus

\[
\begin{align*}
b + c & \overset{**}{=} ar + as \overset{\text{Ax 8}}{=} a(r + s) \quad \text{and} \quad b - c \overset{**}{=} ar - as \overset{2.2.8[1]}{=} a(r - s) \\
\end{align*}
\]

By Ax 1 and Ax 5, R is closed under addition and subtraction. Thus $r + s \in R$ and $r - s \in R$ and so

\[
\begin{align*}
(+) \quad & a|b + c \quad \text{and} \quad a|b - c. \\
\end{align*}
\]
By definition, \(b \mid bu \). Since \(a \mid b \) we conclude from [a] that \(a \mid bu \). Also \(a \mid c \) and [+] implies that

\[
a \mid (bu + c) \quad \text{and} \quad a \mid (bu - c).
\]

By definition, \(c \mid cv \). Since \(a \mid c \) we conclude from [a] that \(a \mid cv \). As seen above \(a \mid bu \) and so[+] gives

\[
a \mid (bu + cv) \quad \text{and} \quad a \mid (bu - cv).
\]

Definition 2.4.5. Let \(R \) be an ring and \(n \in R \). Then the relation \(\equiv \pmod{n} \) on \(R \) is defined by

\[
a \equiv b \pmod{n} \iff n \mid a - b
\]

If \(a \equiv b \pmod{n} \) we say that \(a \) is congruent to \(b \) modulo \(n \).

Example 2.4.6.

1. \(2 \mid 6 \), since \(6 = 2 \cdot 3 \). But \(7 \nmid 31 \),

2. \(6 \equiv 4 \pmod{2} \) is true since 2 divides \(6 - 4 \).
 But \(3 \equiv 8 \pmod{2} \) is false since 2 does not divide \(3 - 8 \). Thus \(3 \not\equiv 8 \pmod{2} \).
 If \(a \) and \(b \) are integers, then \(a \equiv b \pmod{2} \) if and only if \(b - a \) is even and so if and only if either both \(a \) and \(b \) are even, or both \(a \) and \(b \) are odd.
 Hence \(a \not\equiv b \pmod{2} \) if and only if one of \(a \) and \(b \) is even and the other is odd.

3. Let \(a, b \) be integers. Then

\[
a \equiv b \pmod{0} \iff 0 \mid a - b \iff a - b = 0 \cdot k \quad \text{for some} \ k \in \mathbb{Z} \iff a - b = 0 \iff a = b
\]

(3) Let \(a, b \) be integers. Then

So congruent modulo 0 is the equality relation.

4. Since \(m = m \cdot 1 \), 1 divides all integers. Thus \(1 \mid b - a \) for all integers \(a \) and \(b \) and so

\[
a \equiv b \pmod{1} \quad \text{for all} \ a, b \in \mathbb{Z}
\]

Lemma 2.4.7. Let \(R \) be a ring and \(n \in R \). Then the relation \(n \equiv (\mod n) \) is an equivalence relation on \(R \).
Proof. We have to show that "\(\equiv \pmod{n} \)" is reflexive, symmetric and transitive. Let \(a, b, c \in R \).

Reflexive: Since \(a - a = 0 = 0 \cdot n \) we see that \(n \mid a - a \) and so \(a \equiv a \pmod{n} \). Thus "\(\equiv \pmod{n} \)" is reflexive.

Symmetric: Suppose that \(a \equiv b \pmod{n} \). Then \(n \mid (a - b) \). By 2.4.4(b) this gives \(n \mid -(a - b) \). By 2.2.8(h) we have \(-(a - b) = b - a \). Hence \(n \mid b - a \) and so \(b \equiv a \pmod{n} \). Thus "\(\equiv \pmod{n} \)" is symmetric.

Transitive: Suppose that \(a \equiv b \pmod{n} \) and \(b \equiv c \pmod{n} \). Then \(n \mid (a - b) \) and \(n \mid (b - c) \). Thus 2.4.4(c) shows that \(n \mid (a - b) + (b - c) \).

We compute

\[
(a - b) + (b - c) = (a + (-b)) + (b + (-c))
\]

\[
= ((a + (-b)) + b) + (-c)
\]

\[
= ((a + (-b)) + (-b)) + (-c)
\]

\[
= a + (-c)
\]

\[
= a - c
\]

Hence \(n \mid a - c \) and \(a \equiv c \pmod{n} \). Thus "\(\equiv \pmod{n} \)" is transitive.

Definition 2.4.8. Let \(R \) be a ring and \(n \in R \). Recall from 2.4.7 that the relation \(\equiv \pmod{n} \) is an equivalence relation.

(a) For \(a \in R \) we denote the equivalence class of \(\equiv \pmod{n} \) containing \(a \) by \([a]_n\). So

\[
[a]_n = \{b \in R \mid \text{mod } abn\}
\]

\([a]_n\) is called the congruence class of \(a \) modulo \(n \).

(b) \(R_n \) denotes the set of equivalence classes of \(\equiv \pmod{n} \). So

\[
R_n = \{[a]_n \mid a \in R\}
\]

Theorem 2.4.9. Let \(R \) be a ring and \(a, b, n \in R \). Then the following statements are equivalent

(a) \(a = b + nk \) for some \(k \in R \)

(b) \(a - b = nk \) for some \(k \in R \)

(c) \(n \mid a - b \)

(d) \(a \equiv b \pmod{n} \)

(e) \(b \in [a]_n \)

(f) \([a]_n \cap [b]_n \neq \emptyset\)
(g) \([a]_n = [b]_n\).

(h) \(a \in [b]_n\).

(i) \(b \equiv a \pmod{n}\).

(j) \(n \mid b - a\).

(k) \(b - a = nl\) for some \(l \in R\).

(l) \(b = a + nl\) for some \(l \in R\).

Proof. (a) \(\iff\) (b): Add \(b\) to both sides of (b).

(b) \(\iff\) (c): Follows from the definition of 'divide'.

(c) \(\iff\) (d): Follows from the definition of '\(\equiv\pmod{n}\)'.

By 2.4.7 '\(\equiv\pmod{n}\)' is an equivalence relation. So Theorem 1.5.5 implies that (d)-(i) are equivalent. Since we already proved that (a)-(d) are equivalent we conclude that (a) to (i) are equivalent.

Note that (g) is symmetric in \(a\) and \(b\). Since (a)-(c) are equivalent to (g), we can interchange \(a\) and \(b\) in (a)-(c) and conclude that (j) to (l) are equivalent to (g). Thus (a)-(l) are equivalent.

For a general rings it is difficult to determine all the equivalence classes of relation \(\equiv\pmod{n}\). But thanks to the division algorithm it is fairly easy for the ring of integers.

Theorem 2.4.10 (The Division Algorithm). Let \(a\) and \(b\) be integers with \(b > 0\). Then there exist unique integers \(q\) and \(r\) such that

\[a = bq + r \quad \text{and} \quad 0 \leq r < b. \]

Proof. We will first show that \(q\) and \(r\) exist. Put

\[S := \{a - bx \mid x \in \mathbb{Z} \text{ and } a - bx \geq 0\}\]

We would like to apply the well-ordering Axiom to \(S\), so we need to verify that \(S\) is not empty. That is we need to find \(x \in \mathbb{Z}\) such that \(a - bx \geq 0\).

If \(a \geq 0\), then \(a - b0 = a > 0\) and we can choose \(x = 0\).

So suppose \(a < 0\). Let’s try \(x = a\). Then \(a - bx = a - ba = (1 - b)a\). Since \(b > 0\) and \(b\) is an integer, \(b \geq 1\) and so \(1 - b \leq 0\). Since \(a < 0\), this implies \((1 - b)a \geq 0\) and so \(a - bx \geq 0\). So we can indeed choose \(x = a\).

We have proved that \(S\) is non-empty. Note that every element of \(S\) is a natural number and so \(S \subseteq \mathbb{N}\). Hence by the Well-ordering Axiom [C.4.2] \(S\) has a minimal element \(r\). Thus

\[r \in S \quad \text{and} \quad r \leq s \text{ for all } s \in S. \]

Since \(r \in S\), the definition of \(S\) implies that there exists \(q \in \mathbb{Z}\) with \(r = a - bq\). Then \(a = bq + r\) and it remains to show \(0 \leq r < b\). Since \(r \in S\), \(r \geq 0\). Suppose for a contradiction that \(r \geq b\). Then \(r - b \geq 0\). Hence

\[a - b(q + 1) = (a - bq) - b = r - b \geq 0 \]
and \(q + 1 \in \mathbb{Z} \). Thus \(r - b \in S \). Since \(b > 0 \) we have \(r - b < r \), but this is a contradiction since \(r \) is a minimal element of \(S \).

This shows the existence of \(q \) and \(r \). To show the uniqueness let \(q, r, \tilde{q} \) and \(\tilde{r} \) be integers with

\[
\begin{align*}
(a &= bq + r \text{ and } 0 \leq r < b) \quad \text{and} \quad (a = b\tilde{q} + \tilde{r} \text{ and } 0 \leq \tilde{r} < b).
\end{align*}
\]

We need to show that \(q = \tilde{q} \) and \(r = \tilde{r} \).

From \(a = bq + r \) and \(a = b\tilde{q} + \tilde{r} \) we have

\[
bq + r = b\tilde{q} + \tilde{r}
\]

and so

\[
(*) \quad b(q - \tilde{q}) = \tilde{r} - r.
\]

Multiplying the equation \(0 \leq r < b \) with \(-1\) gives \(0 \geq -r > -b \) and so

\[
-b < -r \leq 0.
\]

Adding the inequality

\[
0 \leq \tilde{r} < b
\]

yields

\[
-b < \tilde{r} - r < b
\]

Using \((*)\) we conclude

\[
-b < -b(q - \tilde{q}) < b.
\]

Since \(b > 0 \) we can divide by \(b \) and get

\[
-1 < q - \tilde{q} < 1.
\]

The only integer strictly between \(-1\) and \(1 \) is \(0 \). Hence \(q - \tilde{q} = 0 \) and so \(q = \tilde{q} \). Hence \((*)\) gives \(\tilde{r} - r = b(q - \tilde{q}) = b0 = 0 \) and so also \(\tilde{r} = r \).

\[\square\]

Corollary 2.4.11 (Division Algorithm). Let \(a \) and \(c \) be integers with \(c \neq 0 \). Then there exist unique integers \(q \) and \(r \) such that

\[
a = cq + r \text{ and } 0 \leq r < |c|.
\]

Proof. See Exercise 2.4. \(\square \)

Definition 2.4.12. Let \(a \) and \(b \) be integers with \(b \neq 0 \). Let \(q, r \) be the unique integers with \(a = bq + r \) and \(0 \leq r < |b| \). Then \(r \) is called the remainder of \(a \) when divided by \(b \) and \(q \) is called the integral quotient of \(a \) when divided by \(b \).
Example 2.4.13. (1) $42 = 8 \cdot 5 + 2$ and $0 \leq 2 < 8$. So the remainder of 42 when divided by 8 is 2.

(2) $-42 = 8 \cdot -6 + 6$ and $0 \leq 6 < 8$. So the remainder of -42 when divided by 8 is 6.

Corollary 2.4.14. Let a, b, n be integers with $n \neq 0$. Then

$$a \equiv b \pmod{n}$$

if and only if a and b have the same remainder when divided by n.

Proof. By the division algorithm there exists integers q_1, r_1, q_2, r_2 with

$$a = nq_1 + r_1 \quad \text{and} \quad 0 \leq r_1 < |n|$$

and

$$b = nq_2 + r_2 \quad \text{and} \quad 0 \leq r_2 < |n|.$$

So r_1 and r_2 are remainders of a and b, respectively when divided by n.

\Rightarrow: Suppose $a \equiv b \pmod{n}$. Then by $\ref{2.4.9}$ we have $a = b + nk$ for some integer k. Then

$$a = (nq_2 + r_2) + nk = n(q_2 + k) + r_2.$$

Since $q_2 + k \in \mathbb{Z}$ and $0 \leq r_2 < |n|$, we conclude that r_2 is the remainder of a when divided by n. So $r_1 = r_2$ and a and b have the same remainder when divided by n.

\Leftarrow:

Suppose a and b have the same remainder then divided by n. Then $r_1 = r_2$ and so

$$a - b = (nq_1 + r_1) - (nq_2 + r_2) = n(q_1 - q_2) + (r_1 - r_2) = n(q_1 - q_2).$$

Thus $n \mid a - b$ and so $a \equiv b \pmod{n}$. □

Corollary 2.4.15. Let n be positive integer.

(a) Let $a \in \mathbb{Z}$. Then there exists a unique $r \in \mathbb{Z}$ with $0 \leq r < n$ and $[a]_n = [r]_n$, namely r is the remainder of a when divided by n.

(b) There are exactly n distinct congruence classes modulo n, namely

$$[0], [1], [2], \ldots, [n - 1].$$

(c) $|\mathbb{Z}_n| = n$, that is \mathbb{Z}_n has exactly n elements.
2.4. DIVISIBILITY AND CONGRUENCE IN RINGS

Proof. (a) Let \(a \in \mathbb{Z} \), let \(s \) be the remainder of \(a \) when divided by \(n \) and let \(r \in \mathbb{Z} \) with \(0 \leq r < n \).

Since \(r = 0n + r \) and \(0 \leq r < n \), \(r \) is the remainder of \(r \) when divided by \(n \). By ??, \([a]_n = [r]_n\) if and only if \(a \) and \(r \) have the same remainder when divided by \(n \), and so if and only if \(r = s \).

(b) By definition each congruence class modulo \(n \) is of the form \([a]_n\), with \(a \in \mathbb{Z} \). By (a), \([a]_n\) is equal to exactly one of

\([0], [1], [2], \ldots, [n-1]\).

So (b) holds.

(c) Since \(\mathbb{Z}_n \) is the set of congruence classes modulo \(n \), (c) follows from (b).

Example 2.4.16. Determine \(\mathbb{Z}_5 \).

\[
\mathbb{Z}_5 = \left\{ [0]_5, [1]_5, [2]_5, [3]_5, [4]_5 \right\} = \left\{ [0]_5, [1]_5, [2]_5, [-2]_5, [-1]_5 \right\}
\]

Exercises 2.4:

#1. (a) Let \(k \) be an integer with \(k \equiv 1 \) (mod 4). Compute the remainder of \(6k + 5 \) when divided by 4.

(b) Let \(r \) and \(s \) be integer with \(r \equiv 3 \) (mod 10) and \(s \equiv -7 \) (mod 10). Compute the remainder of \(2r + 3s \) when divided by 10.

#2. If \(a, m, n \in \mathbb{Z} \) with \(m, n > 0 \), prove that \([a^m]_2 = [a^n]_2\)

#3. If \(p \geq 5 \) and \(p \) is a prime, prove that \([p] = [1]\) or \([p] = [5]\) in \(\mathbb{Z}_6 \).

#4. Find all solutions of each congruence:

(a) \(2x \equiv 3 \) (mod 5)
(b) \(3x \equiv 1 \) (mod 7)
(c) \(6x \equiv 9 \) (mod 15)
(d) \(6x \equiv 10 \) (mod 15)

#5. If \(a \equiv 2 \) (mod 4), prove that there are no integers \(c \) and \(d \) with \(a = c^2 - d^2 \).

#6. If \([a] = [1]\) in \(\mathbb{Z}_n \), prove that \(\gcd(a, n) = 1 \). Show by example that the converse is not true.

#7. (a) Show that \(10^n \equiv 1 \) (mod 9) for every positive integer \(n \).

(b) Prove that every positive integer is congruent to the sum of its digits mod 9. [for example, \(38 \equiv 11 \) (mod 9)].
2.5 Modular Arithmetic in Commutative Rings

Theorem 2.5.1. Let R be a commutative ring and $a, \tilde{a}, b, \tilde{b}$ and n elements of R. Suppose that

$$\left[a \right]_n = \left[\tilde{a} \right]_n \quad \text{and} \quad \left[b \right]_n = \left[\tilde{b} \right]_n.$$

or that

$$a \equiv \tilde{a} \pmod{n} \quad \text{and} \quad b \equiv \tilde{b} \pmod{n}.$$

Then

$$\left[a + b \right]_n = \left[\tilde{a} + \tilde{b} \right]_n \quad \text{and} \quad \left[ab \right]_n = \left[\tilde{a} \tilde{b} \right]_n.$$

and

$$a + b \equiv \tilde{a} + \tilde{b} \pmod{n} \quad \text{and} \quad ab \equiv \tilde{a} \tilde{b} \pmod{n}.$$

Proof. Since

$$\left[a \right]_n = \left[\tilde{a} \right]_n \quad \text{and} \quad \left[b \right]_n = \left[\tilde{b} \right]_n.$$

or

$$a \equiv \tilde{a} \pmod{n} \quad \text{and} \quad b \equiv \tilde{b} \pmod{n}$$

we conclude from 2.4.9 that

$$\tilde{a} = a + nk \quad \text{and} \quad \tilde{b} = b + nl$$

for some $k, l \in R$. Hence

$$\tilde{a} + \tilde{b} = (a + nk) + (b + nl) = (a + b) + n(k + l).$$

Since $k + l \in R$, 2.4.9 gives

$$\left[a + b \right]_n = \left[\tilde{a} + \tilde{b} \right]_n \quad \text{and} \quad a + b \equiv \tilde{a} + \tilde{b} \pmod{n}$$

Also

$$\tilde{a} \cdot \tilde{b} = (a + nk)(b + nl) = ab + n(al + kb + knl),$$

and, since $al + kb + knl \in R$, 2.4.9 implies

$$\left[ab \right]_n = \left[\tilde{a} \tilde{b} \right]_n \quad \text{and} \quad ab \equiv \tilde{a} \tilde{b} \pmod{n}.$$

In view of 2.5.1 the following definition is well-defined.
2.5. MODULAR ARITHMETIC IN COMMUTATIVE RINGS

Definition 2.5.2. Let R be commutative ring and a, b and n elements of R. Define

$[a]_n \oplus [b]_n := [a + b]_n$ and $[a]_n \odot [b]_n := [ab]_n$.

The function

$R_n \times R_n \to R_n, \quad (A, B) \mapsto A \oplus B$

is called the addition on R_n, and the function

$R_n \times R_n \to R_n, \quad (A, B) \mapsto A \odot B$

is called the multiplication on R_n.

Example 2.5.3. (1) Compute $[3]_8 \odot [7]_8$.

$[3]_8 \odot [7]_8 = [3 \cdot 7]_8 = [21]_8 = [8 \cdot 2 + 5]_8 = [5]_8$

Note that $[3]_8 = [11]_8$ and $[7]_8 = [-1]_8$. So we could also have used the following computation:

$[11]_8 \odot [-1]_8 = [11 \cdot -1]_8 = [-11]_8 = [-11 + 8 \cdot 2]_8 = [5]_8$

Theorem 2.5.1 ensures that we will always get the same answer, not matter what representative we pick for the congruence class.

(2) Compute $[123]_{212} \oplus [157]_{212}$.

$[123]_{212} \oplus [157]_{212} = [123 + 157]_{212} = [280]_{212} = [280 - 212]_{212} = [68]_{212}$

Note that $[123]_{212} = [123 - 212]_{212} = [-89]_{212}$ and $[157]_{212} = [157 - 212]_{212} = [-55]_{212}$. Also

$[-89]_{212} \oplus [-55]_{212} = [-89 - 55]_{212} = [-144]_{212} = [-144 + 212]_{212} = [68]_{212}$

(3) **Warning:** Congruence classes can not be used as exponents:

We have

$[2^4]_3 = [16]_3 = [1]_3$ and $[2^1]_3 = [2]_3$

So

$[2^4]_3 \neq [2^1]_3$ even though $[4]_3 = [1]_3$

Theorem 2.5.4. Let R be a commutative ring and $n \in R$. Then (R_n, \oplus, \odot) is a commutative ring. If R has an identity, then $[1_R]_n$ is an identity for R_n.
Proof. We need to verify the eight Axioms of a ring. If \(d \in R \) we will just write \([d]\) for \([d]_n\). Let
\(A, B, C \in R_n \). By definition of \(R_n \) there exist \(a, b \) and \(c \) in \(R \) with
\(A = [a], B = [b] \) and \(C = [c] \).

Ax 1 We have \(A \oplus B = [a] \oplus [b] = [a + b] \). Since \(a + b \in R \) we conclude that \(A \oplus B \in R \).

Ax 2 Using the definition of \(\oplus \) and the fact that addition in \(R \) is associative we compute

\[
A \oplus (B \oplus C) = [a] \oplus ([b] \oplus [c]) = [a] \oplus [b + c] = [a + (b + c)] = [(a + b) + c] = [a + b] \oplus [c] = ([a] \oplus [b]) \oplus [c] = (A \oplus B) \oplus C.
\]

Ax 3 Using the definition of \(\oplus \) and the fact that addition in \(R \) is commutative we compute

\[
A \oplus B = [a] \oplus [b] = [a + b] = [b + a] = [b] \oplus [a] = B \oplus A.
\]

Ax 4 Using the definition of \(\oplus \) and the fact that 0\(_R\) is an additive identity in \(R \) we compute

\[
A \oplus [0_R] = [a] \oplus [0_R] = [a + 0_R] = [a] = A,
\]

and

\[
[0_R] \oplus A = [0_R] \oplus [a] = [0_R + a] = [a] = A.
\]

Ax 5 Put \(X = [-a] \). Then \(X \in R \). Using the definition of \(\oplus \) and the fact that \(-a\) is an additive inverse for \(a \) in \(R \) we compute

\[
A \oplus X = [a] \oplus [-a] = [a + (-a)] = [0_R].
\]

Ax 6 Similarly to **Ax 1** we have \(A \odot B = [a] \odot [b] = [ab] \) and so \(A \odot B \in R \).

Ax 7 Similarly to **Ax 2** we can use the definition of \(\odot \) and the fact that multiplication in \(R \) is associative to compute

\[
A \odot (B \odot C) = [a] \odot ([b] \odot [c]) = [a] \odot [bc] = [a(bc)] = [(ab)c] = [ab] \odot [c] = ([a] \odot [b]) \odot [c] = (A \odot B) \odot C.
\]

Ax 8 Using the definition of \(\oplus \) and \(\odot \) and the distributive law in \(R \) we compute

\[
A \odot (B \oplus C) = [a] \odot ([b] \oplus [c]) = [a] \odot [b + c] = [a(b + c)] = [ab + bc] = [ab] \oplus [ac] = ([a] \odot [b]) \oplus ([a] \odot [c]) = (A \odot B) \oplus (A \odot C),
\]

and similarly
\[(A \oplus B) \odot C = ((a \oplus b) \odot [c] = [a + b] \odot [c] = [(a + b)c] = \]

\[(ac + bc) = [ac] \oplus [bc] = ([a] \odot [c]) \oplus ([b] \odot [c]) = (A \circ C) \oplus (B \circ C).
\]

\textbf{Ax 9} Similarly to \textbf{Ax 3} we can use the definition of \(\odot\) and the fact that multiplication in \(\mathbb{Z}\) is commutative to compute

\[A \odot B = [a] \odot [b] = [ab] = [ba] = [b] \odot [a] = B \odot A.\]

\textbf{Ax 10} Similarly to \textbf{Ax 4} we can use the definition of \(\odot\) and the fact that 1 is a multiplicative identity in \(R\) to compute

\[A \odot [1_R] = [a] \odot [1_R] = [a1_R] = [a] = A,\]

and

\[[1_R] \odot A = [1_T] \odot [a] = [1_Ra] = [a1_R] = A\]

\[\square\]

2.6 Subrings

\textbf{Definition 2.6.1.} Let \((R, +, \cdot)\) be a ring and \(S\) a subset of \(R\). Then \((S, +, \cdot)\) is called a subring of \((R, +, \cdot)\) provided that \((S, +, \cdot)\) is a ring.

\textbf{Theorem 2.6.2} (Subring Theorem). Suppose that \(R\) is a ring and \(S\) a subset of \(R\). Then \(S\) is a subring of \(R\) if and only if the following four conditions hold:

(I) \(0_R \in S\).

(II) \(S\) is closed under addition (that is: if \(a, b \in S\), then \(a + b \in S\));

(III) \(S\) is closed under multiplication (that is: if \(a, b \in S\), then \(ab \in S\));

(IV) \(S\) is closed under negatives (that is: if \(a \in S\), then \(-a \in S\))

\textbf{Proof.} \(\Rightarrow\): Suppose first that \(S\) is a subring of \(R\).

By \textbf{Ax 3} for \(S\) there exists \(0_S \in S\) with \(0_S + a = a\) for all \(a \in S\). In particular, \(0_S + 0_S = 0_S\). So by 2.2.4

\[0_S = 0_R.\]

Since \(0_S \in S\), this gives \(0_R \in S\) and \(I\) holds.

By \textbf{Ax 1} for \(S\), \(a + b \in S\) for all \(a, b \in S\). So \(II\) holds.
By \(\text{Ax 6} \) for \(S \), \(ab \in S \) for all \(a, b \in S \). So \(\text{[III]} \) holds.

Let \(s \in S \). Then by \(\text{Ax 5} \) for \(S \), there exists \(t \in S \) with \(s + t = 0_S \). By \(\text{[IV]} \) \(0_S = 0_R \) and so \(s + t = 0_R \). Thus by \(\text{2.2.6} \), \(t = -s \). Since \(t \in S \) this gives \(-s \in S \) and \(\text{[IV]} \) holds.

\[\implies: \] Suppose now that \(\text{[I]} - \text{[IV]} \) hold.

Since \(S \) is a subset of \(R \), \(S \) is a set. Hence Condition (i) in the definition of a ring holds for \(S \).

Since \(S \) is a subset of \(R \), \(S \times S \) is a subset \(R \times R \). By Conditions (ii) and (iii) in the definition of a ring, \(R \times R \) is a subset of the domains of + and \(- \). Hence also \(S \times S \) is a subset of the domains of + and \(- \). Thus Conditions (ii) and (iii) in the definition of a ring hold for \(S \).

By \(\text{[II]} \) \(a + b \in S \) for all \(a, b \in S \) and so \(\text{Ax 1} \) holds for \(S \).

By \(\text{Ax 2} \) \((a + b) + c = a + (b + c) \) for all \(a, b, c \in R \). Since \(S \subseteq R \) we conclude that \((a + b) + c = a + (b + c) \) for all \(a, b, c \in S \). Thus \(\text{Ax 2} \) holds for \(S \).

Similarly, since \(\text{Ax 3} \) for all elements in \(R \) it also holds for all elements of \(S \).

Put \(0_S := 0_R \). Then \(\text{[I]} \) implies \(0_S \in S \). By \(\text{Ax 4} \) for \(R \), \(a = 0_R + a \) and \(a = a + 0_R \) for all \(a \in R \). Thus \(a = 0_S + a \) and \(a = a + 0_S \) for all \(a \in S \) and so \(\text{Ax 4} \) holds for \(S \).

Let \(s \in S \). Then \(s + (-s) = 0_R \) and since \(0_S = 0_R \), \(s + (-s) = 0_S \). By \(\text{[IV]} \) \(-s \in S \) and so \(\text{Ax 5} \) holds for \(S \).

By \(\text{[III]} \) \(ab \in S \) for all \(a, b \in S \) and so \(\text{Ax 6} \) holds for \(S \).

Since \(\text{Ax 7} \) and \(\text{Ax 8} \) hold for all elements of \(R \) they also hold for all elements of \(S \). Thus \(\text{Ax 7} \) and \(\text{Ax 8} \) holds for \(S \).

So \(\text{Ax 1, Ax 8} \) hold for \(S \) and thus \(S \) is a ring. Hence, by definition, \(S \) is a subring of \(R \). \(\square \)

Example 2.6.3. (1) Show that \(\mathbb{Z} \) is a subring of \(\mathbb{Q} \), \(\mathbb{Q} \) is a subring of \(\mathbb{R} \) and \(\mathbb{R} \) is a subring of \(\mathbb{C} \).

By example 2.1.4, \(\mathbb{Z} \), \(\mathbb{Q} \) and \(\mathbb{R} \) are rings. So by definition of a subring, \(\mathbb{Z} \) is a subring of \(\mathbb{Q} \), \(\mathbb{Q} \) is a subring of \(\mathbb{R} \) and \(\mathbb{R} \) is a subring of \(\mathbb{C} \).

(2) Let \(n \in \mathbb{Z} \) and put \(n\mathbb{Z} := \{nk \mid k \in \mathbb{Z}\} \). Show that \(n\mathbb{Z} \) is subring of \(\mathbb{Z} \).

We will verify the four conditions of the Subring Theorem for \(S = n\mathbb{Z} \).

Observe first that since \(n\mathbb{Z} = \{nk \mid k \in \mathbb{Z}\} \),

\[
(*) \quad a \in n\mathbb{Z} \iff \text{there exists } k \in \mathbb{Z} \text{ with } a = nk.
\]

Let \(a, b \in n\mathbb{Z} \). Then by \((*) \)

\[
(**) \quad a = nk \quad \text{and} \quad b = nl,
\]

for some \(k, l \in \mathbb{Z} \).

(I): \(0 = n0 \) and so \(0 \in n\mathbb{Z} \) by \((*) \)

(II): \(a + b \ \Rightarrow nk + nl = n(k + l) \). Since \(k + l \in \mathbb{Z} \), \((*) \) shows \(a + b \in \mathbb{Z} \). So \(n\mathbb{Z} \) is closed under addition.
2.7. UNITS IN RINGS

(III): \(ab \overset{\text{**}}{=} (nk)(nl) = n(knl) \). Since \(nkl \in \mathbb{Z} \), (**) shows \(ab \in \mathbb{Z} \). So \(n\mathbb{Z} \) is closed under multiplication.

(IV): \(-a \overset{**}{=} -(nk) = n(-k) \). Since \(-k \in \mathbb{Z} \), (**) shows \(-a \in \mathbb{Z} \). So \(n\mathbb{Z} \) is closed under negatives.

(3) Show that \{[0]_4, [2]_4\} is a subring of \(\mathbb{Z}_4 \).

We compute in \(\mathbb{Z}_4 \): \(0 \mathbb{Z}_4 = 0 \in \{0,2\} \) and so Condition (I) of the Subring Theorem holds. We compute:

\[
\begin{array}{c|cc}
+ & 0 & 2 \\
0 & 0 & 2 \\
2 & 2 & 0 \\
\end{array}
\quad
\begin{array}{c|cc}
\cdot & 0 & 2 \\
0 & 0 & 0 \\
2 & 0 & 0 \\
\end{array}
\quad
\begin{array}{c|cc}
x & 0 & 2 \\
-x & 0 & 2 \\
\end{array}
\]

So \{0, 2\} is closed under addition, multiplication and negatives. Thus \{0, 2\} is a subring of \(\mathbb{Z}_4 \) by Subring Theorem.

2.7 Units in Rings

Definition 2.7.1. Let \(R \) be a ring with identity.

(a) Let \(u \in R \). Then \(u \) is called a unit in \(R \) if there exists an element in \(R \), denoted by \(u^{-1} \) and called ‘\(u \)-inverse’, with

\[uu^{-1} = 1_R = u^{-1}u. \]

(b) Let \(u, v \in R \). Then \(v \) is called an (multiplicative) inverse of \(u \) if \(uv = 1_R = vu \).

(c) Let \(e \in R \). Then \(e \) is called an (multiplicative) identity of \(R \), if \(ea = a = ae \) for all \(a \in R \).

Example 2.7.2. Find the units in \(\mathbb{Z} \), \(\mathbb{Q} \) and \(\mathbb{Z}_6 \).

Units in \(\mathbb{Z} \): Let \(u \) be a unit in \(\mathbb{Z} \). Then \(uv = 1 \) for some \(v \in \mathbb{Z} \). So \(u \mid 1 \) and so by ?? \(1 \leq |u| \leq 1 \). Hence \(|u| = 1 \) and \(\pm 1 \) are the only units in \(\mathbb{Z} \).

Units in \(\mathbb{Q} \): Let \(u \) be a non-zero rational number. Then \(u = \frac{n}{m} \) with \(n, m \in \mathbb{Z} \) with \(n \neq 0 \) and \(m \neq 0 \). Thus \(\frac{1}{u} = \frac{m}{n} \) is rational. So all non-zero elements in \(\mathbb{Q} \) are units.

Units in \(\mathbb{Z}_6 \): By \([2.4.15] \mathbb{Z}_6 = \{0, 1, 2, 3, 4, 5\} \) and so \(\mathbb{Z}_6 = \{0, \pm 1, \pm 2, 3\} \). We compute
Let R be a ring and e and $e' \in R$. Suppose that

\[(*) \quad ea = a \quad \text{and} \quad (**) \quad ae' = a \]

for all $a \in R$. Then $e = e'$ and e is a multiplicative identity in R. In particular, a ring has at most one multiplicative identity.

(b) Let R be a ring with identity and $x, y, u \in R$ with

\[(+) \quad xu = 1_R \quad \text{and} \quad (++) \quad uy = 1_R. \]

Then $x = y$, u is a unit in R and x is an inverse of u.

Proof. (a) \\
\[e \overset{(\star)}{=} ee' \overset{(**)}{=} e' \]

(b) \\
\[y^{(Ax \, 10)} \overset{(+)}{=} 1_{RY} \overset{(Ax \, 7)}{=} (xu)y \overset{(++)}{=} x(uy) \overset{(Ax \, 10)}{=} x1_R = x. \]

Theorem 2.7.4 (Multiplicative Inverse Law). Let R be a ring with identity and $u, v \in R$. Suppose u is a unit. Then

\[v = u^{-1} \]

\[\iff \quad vu = 1_R \]

\[\iff \quad uv = 1_R \]

In particular, u^{-1} is the unique multiplicative inverse of u.

Proof. Recall first that by definition of unit:

\[(*) \quad uu^{-1} = 1_R \quad \text{and} \quad (**) \quad u^{-1}u = 1_R \]

First Statement \implies Second Statement': Suppose $v = u^{-1}$. Then $vu = u^{-1}u \overset{(**)}{=} 1_R$.
2.7. UNITS IN RINGS

'Second Statement \implies Third Statement': Suppose that \(vu = 1_R \). By (\(*\) \(uu^{-1} = 1_R \). Thus by 2.7.3 applied with \(x = v \) and \(y = u^{-1} \) we have \(v = u^{-1} \) and so \(uv = uu^{-1} \) \(\equiv 1_R \).

'Third Statement \implies First Statement': Suppose that \(uv = 1_R \). By (**\) \(u^{-1}u = 1_R \). Thus 2.7.3 applied with \(x = u^{-1} \) and \(y = v \) gives \(u^{-1} = v \).

Lemma 2.7.5. Let \(R \) be a ring with identity and \(a \) and \(b \) units in \(R \).

(a) \(a^{-1} \) is a unit and \((a^{-1})^{-1} = a \).

(b) \(ab \) is a unit and \((ab)^{-1} = b^{-1}a^{-1} \).

Proof. (a) By definition of \(a^{-1} \), \(aa^{-1} = 1_R \). Hence also \(a^{-1}a = 1_R \). Thus \(a^{-1} \) is a unit and by the Multiplicative Inverse Law 2.7.4, \(a = (a^{-1})^{-1} \).

(b) See Exercise 2.7.#7.

Definition 2.7.6. A ring \(R \) is called an integral domain provided that \(R \) is commutative, \(R \) has an identity, \(1_R \neq 0_R \) and

\[(Ax \ 11) \quad \text{whenever} \ a, b \in R \ \text{with} \ ab = 0_R, \ \text{then} \ a = 0_R \ \text{or} \ b = 0_R. \]

Theorem 2.7.7 (Multiplicative Cancellation Law for Integral Domains). Let \(R \) be an integral domain and \(a, b, c \in R \) with \(a \neq 0_R \). Then

\[ab = ac \quad \iff \quad b = c \quad \iff \quad ba = ca \]

Proof. 'First Statement \implies Second Statement:' Suppose \(ab = ac \). Then

\[a(b - c) = ab - ac \quad \text{Principal of Substitution,} \ ab = ac \]
\[= ab - ab \quad \text{2.2.8[6]} \]
\[= 0_R \quad \text{2.2.8[6]} \]

Since \(R \) is an integral domain, (Ax 11) holds. So \(a(b - c) = 0_R \) implies \(a = 0_R \) or \(b - c = 0_R \). By assumption \(a \neq 0_R \) and so \(b - c = 0_R \). Thus by 2.2.8[6], \(b = c \).

'Second Statement \implies Third Statement:' If \(b = c \) then \(ab = ac \) by the Principal of Substitution.

'Third Statement \implies First Statement:' Since integral domains are commutative, \(ba = ca \) implies \(ab = ac \).

Definition 2.7.8. A ring \(R \) is called a field provided that \(R \) is commutative, \(R \) has an identity, \(1_R \neq 0_R \) and

\[(Ax \ 12) \quad \text{each} \ a \in R \ \text{with} \ a \neq 0_R \ \text{is a unit in} \ R. \]

Example 2.7.9. Which of the following rings are fields? Which are integral domains?
(a) \mathbb{Z}.
(b) \mathbb{Q}.
(c) \mathbb{R}.
(d) \mathbb{Z}_3.
(e) \mathbb{Z}_6.
(f) $M_2(\mathbb{R})$.
(g) \mathbb{Z}_p, p a prime.

All of the rings have a non-zero identity. All but $M_2(\mathbb{R})$ are commutative. If a, b are non-zero real numbers then $ab \neq 0$. So (Ax 11) holds for \mathbb{R} and so also for \mathbb{Z} and \mathbb{Q}. Thus \mathbb{Z}, \mathbb{Q} and \mathbb{R} are integral domains.

- (a) 2 does not have an inverse in \mathbb{Z}. So \mathbb{Z} is an integral domain, but not a field.
- (b) The inverse of a non-zero rational numbers is rational. So \mathbb{Q} is a integral domain and a field.
- (c) The inverse of a non-zero real numbers is real. So \mathbb{R} is a integral domain and a field.
- (d) ±1 are the only non-zero elements in \mathbb{Z}_3. $1 \cdot 1 = 1$ and $-1 \cdot -1 = 1$. So ±1 are units and \mathbb{Z}_3 is a field. Also $±1 \cdot ±1 = ±1 \neq 0$ and so \mathbb{Z}_3 is an integral domain.
- (e) By 2.7.2 the units in \mathbb{Z}_6 are ±1 and ±3. Thus 2 is not a unit and so \mathbb{Z}_6 is not a field. Note that $2 \cdot 3 = 6 = 0$ in \mathbb{Z}_6 and so \mathbb{Z}_6 is not an integral domain.
- (f) Note that $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ is not a unit and $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \cdot \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$. So $M_2(\mathbb{R})$ fails all conditions of a field and integral domain, except for $1_R \neq 0_R$.

Proposition 2.7.10. Every field is an integral domain.

Proof. Let F be a field. Then by definition, F is an commutative ring with identity and $1_F \neq 0_F$. So it remains the verify (Ax 11) in 2.7.6 For this let $a, b \in F$ with

\[(*)\]

\[ab = 0_F.\]

Suppose that $a \neq 0_F$. Then by the definition of a field, a is a unit. Thus a has multiplicative inverse a^{-1}. So we compute

\[0_F \overset{2.2.8}{=} a^{-1} \cdot 0_F \overset{(*)}{=} a^{-1} \cdot (a \cdot b) \overset{\text{Ax 7}}{=} (a^{-1} \cdot a) \cdot b \overset{\text{Def: } a^{-1}}{=} 1_F \cdot b \overset{\text{Ax 10}}{=} b.\]

So $b = 0_F$.

We have proven that if $a \neq 0_F$, then $b = 0_F$. So $a = 0_F$ or $b = 0_F$. Hence (Ax 11) holds and F is an integral domain.

Theorem 2.7.11. Every finite integral domains is a field.
Proof. Let R be a finite integral domain. Then R is a commutative ring with identity and $1_R \neq 0_R$. So it remains to show that every $a \in R$ with $a \neq 0_R$ is a unit. Set $S := \{ar \mid r \in R\}$. Define a function f by
\[f: R \to S, \quad r \mapsto ar. \]
Let $b, c \in R$ with $f(b) = f(c)$. Then $ab = ac$ and by the Cancellation Law $2.7.7$ $b = c$. Thus f is 1-1. Also
\[\text{Im } f = \{f(r) \mid r \in R\} = \{ar \mid r \in R\} = S, \]
and so f is onto. Hence f is a bijection and so $|R| = |S|$. Since $S \subseteq R$ and R is finite we conclude $R = S$. In particular, $1_R \in S$ and so there exists $b \in R$ with $1_R = ab$. Since R is commutative we also have $ba = 1_R$ and so a is a unit.

Definition 2.7.12. Let R be a ring and $a \in R$.

(a) Let $n \in \mathbb{Z}^+$. Then a^n is inductively defined by $a^1 = a$ and $a^{n+1} = a^n a$.

(b) If R has an identity, then $a^0 = 1_R$.

(c) If R has an identity and a is a unit, then $a^{-n} = (a^{-1})^n$ for all $n \in \mathbb{Z}^+$.

Exercises 2.7:

#1. Let R be a ring and $a \in R$. Let $n, m \in \mathbb{Z}$ such that a^n and a^m are defined. (So $n, m \in \mathbb{Z}^+$, or R has an identity and $n, m \in \mathbb{N}$, or R has identity, a is a unit and $n, m \in \mathbb{Z}$.) Show that

(a) $a^n a^m = a^{n+m}$.

(b) $a^{nm} = (a^n)^m$.

#2. Prove or disprove:

(a) If R and S are integral domains, then $R \times S$ is an integral domain.

(b) If R and S are fields, then $R \times S$ is a field.

#3. Which of the following six sets are subrings of $M_2(\mathbb{R})$? Which ones have an identity?

(a) All matrices of the form
\[
\begin{bmatrix}
0 & r \\
0 & 0
\end{bmatrix}
\]
with $r \in \mathbb{Q}$.

(b) All matrices of the form
\[
\begin{bmatrix}
a & b \\
0 & c
\end{bmatrix}
\]
with $a, b, c \in \mathbb{Z}$.
(c) All matrices of the form \[
\begin{bmatrix}
a & a \\
b & b \\
\end{bmatrix}
\] with \(a, b \in \mathbb{R}\).

(d) All matrices of the form \[
\begin{bmatrix}
a & 0 \\
0 & a \\
\end{bmatrix}
\] with \(a, b \in \mathbb{R}\).

(e) All matrices of the form \[
\begin{bmatrix}
a & 0 \\
0 & a \\
\end{bmatrix}
\] with \(a \in \mathbb{R}\).

(f) All matrices of the form \[
\begin{bmatrix}
a & 0 \\
0 & 0 \\
\end{bmatrix}
\] with \(a \in \mathbb{R}\).

#4. Let \(\mathbb{Z}[i]\) denote the set \(\{a + bi \mid a, b \in \mathbb{Z}\}\). Show that \(\mathbb{Z}[i]\) is a subring of \(\mathbb{C}\).

#5. An element \(e\) of a ring is said to be an idempotent if \(e^2 = e\).

(a) Find four idempotents in \(M(\mathbb{R})\).

(b) Find all idempotents in \(\mathbb{Z}_{12}\).

(c) Prove that the only idempotents in an integral domain \(R\) are \(0_R\) and \(1_R\).

#6. Let \(R\) be a ring and \(b\) a fixed element of \(R\). Let \(T = \{rb \mid r \in R\}\). Prove that \(T\) is a subring of \(R\).

#7. (a) If \(a\) and \(b\) are units in a ring with identity, prove that \(ab\) is a unit with inverse \(b^{-1}a^{-1}\).

(b) Give an example to show that if \(a\) and \(b\) are units, then \(a^{-1}b^{-1}\) does not need to be the multiplicative inverse of \(ab\).

#8. Let \(R\) be a ring with identity. If \(ab\) and \(a\) are units in \(R\), prove that \(b\) is a unit.

#9. Let \(R\) be a commutative ring with identity \(1_R \neq 0_R\). Prove that \(R\) is an integral domain if and only if cancellation holds in \(R\), (that is whenever \(a, b, c \in R\) with \(a \neq 0_R\) and \(ab = ac\) then \(b = c\)).

2.8 The Euclidean Algorithm for Integers

Definition 2.8.1. (a) Let \(R\) be a ring and \(a, b, c \in R\). We say that \(c\) is a common divisor of \(a\) and \(b\) in \(R\) provided that

\[c \mid a \quad \text{and} \quad c \mid b.\]
2.8. THE EUCLIDEAN ALGORITHM FOR INTEGERS

(b) Let \(a, b \) and \(d \) be integers. We say that \(d \) is a greatest common divisor of \(a \) and \(b \) in \(\mathbb{Z} \), and we write

\[
d = \gcd(a, b).
\]

provided that

(i) \(d \) is a common divisor of \(a \) and \(b \) in \(\mathbb{Z} \); and

(ii) if \(c \) is a common divisor of \(a \) and \(b \) in \(\mathbb{Z} \) then \(c \leq d \).

Example 2.8.2. (1) The largest integer dividing both 24 and 42 is 6. So 6 is the greatest common divisor of 24 and 42.

(2) All integers divide 0 and 0. So there does not exist a greatest common divisor of 0 and 0.

Lemma 2.8.3. Let \(a, b, q, r \) and \(d \) be integers with

\[
a = bq + r \quad \text{and} \quad d = \gcd(b, r).
\]

Then

\[
d = \gcd(a, b).
\]

Proof. We need to verify the two conditions (i) and (ii) of the gcd.

(i): Since \(d = \gcd(b, r) \) we know that \(d \) is a common divisor of \(b \) and \(r \). As \(a = bq + r \) we conclude that \(d \) divides \(a \), see \[2.4.4\]c. Thus \(d \) is a common divisor of \(a \) and \(b \).

(ii) Let \(c \) be a common divisor of \(a \) and \(b \). Since \(a = bq + r \) we have \(r = a - bq \). Hence \(c \mid r \), see \[2.4.4\]c. Thus \(c \) is a common divisor of \(b \) and \(r \). Since \(d = \gcd(b, r) \) this gives \(c \leq d \). \(\square\)

Theorem 2.8.4 (Euclidean Algorithm). Let \(a \) and \(b \) be integers not both 0 and let \(E_{-1} \) and \(E_0 \) be the equations

\[
E_{-1} : \quad a &= a_1 + b_0 \\
E_0 : \quad b &= a_0 + b_1,
\]

Let \(i \in \mathbb{N} \) and suppose inductively we already defined equation \(E_k, -1 \leq k \leq i \) of the form

\[
E_k : \quad r_k &= ax_k + by_k.
\]

Suppose \(r_i \neq 0 \) and let \(t_{i+1}, q_{i+1} \in \mathbb{Z} \) with

\[
r_{i-1} = r_i q_{i+1} + t_{i+1} \quad \text{and} \quad |t_{i+1}| < |r_i|.
\]

(Note here that such \(t_{i+1}, q_{i+1} \) exist by the division algorithm \[2.4.11\].

Let \(E_{i+1} \) be the equation of the form \(r_{i+1} = ax_{i+1} + by_{i+1} \) obtained by subtracting \(q_{i+1} \)-times equation \(E_i \) from \(E_{i-1} \). Then there exists \(m \in \mathbb{N} \) with \(r_{m-1} \neq 0 \) and \(r_m = 0 \). Put \(d = |r_{m-1}| \). Then
(a) \(r_k, x_k, y_k \in \mathbb{Z} \) for all \(k \in \mathbb{Z} \) with \(-1 \leq k \leq m \).

(b) \(d \) is the greatest common divisor of \(a \) and \(b \).

(c) \(r_{m-1} = ax_{m-1} + by_{m-1} \) and \(d = ax + by \) for some \(x, y \in \mathbb{Z} \).

Proof. For \(k \in \mathbb{Z} \) with \(k \geq -1 \), let \(P(k) \) be the statement that \(r_k, x_k \) and \(y_k \) are integers and if \(k \geq 1 \), then \(|r_k| < |r_{k-1}| \).

By the definition of \(E_0 \) and \(E_1 \) we have \(r_{-1} = a, x_{-1} = 1, y_{-1} = 0, r_0 = b, x_0 = 0 \) and \(y_0 = -1 \). Thus \(P(-1) \) and \(P(0) \) hold. Suppose now that \(i \in \mathbb{N} \), that \(P(k) \) holds for all \(k \in \mathbb{Z} \) with \(-1 \leq k \leq i \) and that \(r_i \neq 0 \). We have

\[
E_{i-1} : \quad r_{i-1} = ax_{i-1} + by_{i-1}
\]

\[
E_i : \quad r_i = ax_i + by_i.
\]

and subtracting \(q_{i+1} \) times \(E_i \) from \(E_{i-1} \) we obtain

\[
E_{i+1} : \quad r_{i-1} - r_i q_{i+1} = a(x_{i-1} - x_i q_{i+1}) + b(y_{i-1} - x_i q_{i+1}).
\]

Hence

\[
\begin{align*}
\quad r_{i+1} &= r_{i-1} - r_i q_{i+1} \\
\quad x_{i+1} &= x_{i-1} - x_i q_{i+1} \\
\quad y_{i+1} &= y_{i-1} - x_i q_{i+1}.
\end{align*}
\]

By choice, \(q_{i+1} \) is an integer. By the induction assumption, \(x_i, x_{i-1}, y_{i-1} \) and \(y_i \) are integers. Hence also \(r_{i+1}, x_{i+1} \) and \(y_{i+1} \) are integers. By choice of \(q_{i+1} \) and \(t_{i+1} \)

\[
r_{i-1} = r_i q_{i+1} + t_{i+1} \quad \text{and} \quad |t_{i+1}| < |r_i|.
\]

So

\[
t_{i+1} = r_i q_{i+1} - r_{i-1} = r_{i+1} \quad \text{and} \quad |r_{i+1}| < |r_i|.
\]

Hence \(P(i+1) \) holds. So by the principal of complete induction, \(P(n) \) holds for all \(n \in \mathbb{Z} \) with \(n \geq -1 \) (for which \(E_0 \) is defined).

In particular, \([a] \) holds and

\[
|r_0| > |r_1| > |r_2| > |r_3| > \ldots > |r_i| > \ldots
\]

Since the \(r_i \)'s are integers, we conclude that there exists \(m \in \mathbb{N} \) with \(r_{m-1} \neq 0 \) and \(r_m = 0 \).

From \(r_{i-1} = r_i q_{i+1} + t_{i+1} = r_i q_{i+1} + r_{i+1} \) and \(2.8.3 \) we have \(\gcd(r_{i-1}, r_i) = \gcd(r_i, r_{i+1}) \) and so

\[
\gcd(a, b) = \gcd(r_1, r_0) = \gcd(r_0, r_1) = \ldots = \gcd(r_{m-1}, r_m) = \gcd(r_{m-1}, 0) = |r_{m-1}| = d.
\]

So \([b] \) holds.

The first statement in \([c] \) is the equation \(E_{m-1} \). If \(r_{m-1} > 0 \), then \(d = r_{m-1} = ax_{m-1} + by_{m-1} \) and if \(r_{m-1} < 0 \), then \(d = -r_{m-1} = a(-x_{m-1}) + b(-y_{m-1}) \) and so \([c] \) holds. \(\square \)
Example 2.8.5. Let \(a = 1492 \) and \(b = 1066 \). Then

\[
\begin{align*}
E_{-1} & : \quad 1492 = 1492 \cdot 1 + 1066 \cdot 0 \\
E_0 & : \quad 1066 = 1492 \cdot 0 + 1066 \cdot 1 \\
E_1 & : \quad 426 = 1492 \cdot 1 + 1066 \cdot -1 & |E_{-1} - E_0 \\
E_2 & : \quad 214 = 1492 \cdot -2 + 1066 \cdot 3 & |E_0 - 2E_1 \\
E_3 & : \quad 212 = 1492 \cdot 3 + 1066 \cdot -4 & |E_1 - E_2 \\
E_4 & : \quad 2 = 1492 \cdot -5 + 1066 \cdot 7 & |E_2 - E_3 \\
E_5 & : \quad 0 & |E_3 - 106E_4
\end{align*}
\]

So \(\gcd(1492, 1066) = 2 \) and \(2 = 1492 \cdot -5 + 1066 \cdot 7 \).

Theorem 2.8.6. Let \(a \) and \(b \) be integers not both zero and \(d := \gcd(a, b) \). Then \(d \) is the smallest positive integer of the form \(au + bv \) with \(u, v \in \mathbb{Z} \).

Proof. By the Euclidean Algorithm \(d \) is of the form \(au + bv \) with \(u, v \in \mathbb{Z} \). Now let \(e \) be any positive integer of the form \(e = au + bv \) for some \(u, v \in \mathbb{Z} \). Since \(d = \gcd(a, b) \), \(d \) divides \(a \) and \(b \). Thus by ??, \(d \) divides \(au + bv = e \). Hence ??(??) shows that \(d \leq |d| \leq |e| = e \). Thus \(d \) is the smallest positive integer of the form \(au + bv \) with \(u, v \in \mathbb{Z} \).

Corollary 2.8.7. Let \(a \) and \(b \) be integers not both \(0 \) and \(d \) a positive integer. Then \(d \) is the greatest common divisor of \(a \) and \(b \) if and only if

(I) \(d \) is a common divisor of \(a \) and \(b \); and

(II) \(c \) is a common divisor of \(a \) and \(b \), then \(c \) | \(d \).

Proof. \(\implies \): Suppose first that \(d = \gcd(a, b) \). Then \(\Box \) holds by the definition of \(\gcd \). By \(2.8.4 \) \(d = ax + by \) for some \(x, y \in \mathbb{Z} \). So if \(c \) is a common divisor of \(a \) and \(b \), then ?? shows that \(c \) | \(d \). Thus \(\Box \) holds.

\(\Longleftarrow \): Suppose next that \(\Box \) and \(\Box \) holds. Then \(d \) is a common divisor of \(a \) and \(b \) by \(\Box \). Let \(c \) be a common divisor of \(a \) and \(b \). Then by \(\Box \), \(c \) | \(d \). Thus by ??, \(c \leq |d| = d \). Hence by definition, \(d \) is a greatest common divisor of \(a \) and \(b \).

Theorem 2.8.8. Let \(a, b \) integers not both \(0 \) with \(\gcd(a, b) = 1 \). Let \(c \) be an integer with \(a | bc \). Then \(a | c \).

Proof. Since \(\gcd(a, b) = 1 \), \(2.8.4 \) shows that \(1 = ax + by \) for some \(x, y \in \mathbb{Z} \). Hence

\[
c = 1c = (ax + by)c = a(xc) + (bc)y.
\]

Note that \(a \) divides \(a \) and \(bc \), and that \(xc \) and \(y \) are integers. So by ??, \(a \) also divides \(a(xc) + (bc)y \). Thus \(a \) | \(c \).
Exercises 2.8:

#1. If \(a \mid b\) and \(b \mid c\), prove that \(a \mid c\).

#2. If \(a \mid c\) and \(b \mid c\), must \(ab\) divide \(c\)? What if \(\gcd(a, b) = 1\)?

#3. Let \(a\) and \(b\) be integers, not both zero. Show that \(\gcd(a, b) = 1\) if and only if there exist integers \(u\) and \(v\) with \(ua + vb = 1\).

#4. Let \(a\) and \(b\) be integers, not both zero. Let \(d = \gcd(a, b)\) and let \(e\) be a positive common divisor of \(a\) and \(b\).
 (a) Show that \(\gcd\left(\frac{a}{e}, \frac{b}{e}\right) = \frac{d}{e}\).
 (b) Show that \(\gcd\left(\frac{a}{d}, \frac{b}{d}\right) = 1\).

#5. Prove or disprove each of the following statements.
 (a) If \(2 \nmid a\), then \(4 \mid (a^2 - 1)\).
 (b) If \(2 \nmid a\), then \(8 \mid (a^2 - 1)\).

#6. Let \(n\) be a positive integers and \(a\) and \(b\) integers with \(\gcd(a, b) = 1\). Use induction to show that \(\gcd(a, b^n) = 1\).

#7. Let \(a, b, c\) be integers with \(a, b\) not both zero. Prove that the equation \(ax + by = c\) has integer solutions if and only if \(\gcd(a, b) \mid c\).

#8. Prove that \(\gcd(n, n + 1) = 1\) for any integer \(n\).

#9. Prove or disprove each of the following statements.
 (a) If \(2 \nmid a\), then \(24 \mid (a^2 - 1)\).
 (b) If \(2 \nmid a\) and \(3 \nmid a\), then \(24 \mid (a^2 - 1)\).

#10. Let \(n\) be an integer. Then \(\gcd(n + 1, n^2 - n + 1) = 1\) or 3.

#11. Let \(a, b, c\) be integers with \(a \mid bc\). Show that there exist integers \(\tilde{b}, \tilde{c}\) with \(\tilde{b} \mid b, \tilde{c} \mid c\) and \(a = \tilde{b}\tilde{c}\).

2.9 Integral Primes

Definition 2.9.1. An integer \(p\) is called a prime if \(p \notin \{0, 1, -1\}\) and the only divisors of \(p\) are \(1, -1, p\) and \(-p\).

Lemma 2.9.2. (a) Let \(p\) be an integer. Then \(p\) is a prime if and only if \(-p\) is prime.

 (b) Let \(p\) be a prime and \(a\) an integer. Then either \((p \mid a \text{ and } \gcd(a, p) = |p|)\) or \((p \nmid a \text{ and } \gcd(a, p) = 1)\).
(c) Let \(p \) and \(q \) be primes with \(p \mid q \). Then \(p = q \) or \(p = -q \).

Proof. (a) Note that

\[
p \notin \{0, \pm 1\} \quad \text{if and only if} \quad -p \notin \{0, \pm 1\},
\]

By ??

(**) \(p \) and \(-p \) have the same divisor.

Moreover,

\[\pm p = \pm (-p)\]

Thus the following statements are equivalent:

\[\equiv \quad p \notin \{0, \pm 1\} \text{ and the only divisors of } p \text{ are } \pm 1 \text{ and } \pm p \quad \text{Definition of a prime.}\]

\[\equiv -p \notin \{0, \pm 1\} \text{ and the only divisors of } -p \text{ are } \pm 1 \text{ and } \pm (-p) \quad \text{(*) (**) and (***)}\]

\[\equiv -p \text{ is a prime.} \quad \text{Definition of a prime.}\]

So (a) holds.

[b]: Put \(d := \gcd(a, p) \). Then \(d \mid p \) and since \(d \) is prime, \(d \in \{\pm 1, \pm p\} \). Since \(d \) is positive we conclude

\[\equiv d = 1 \quad \text{or} \quad d = |p|\]

Case 1: Suppose \(p \mid a \).

Since \(p \mid p, p \) is a common divisor of \(a \) and \(p \). Thus (by ??(??)), also \(|p| \) is a common divisor of \(a \) and \(p \). Since \(d = \gcd(a, p) \) this gives and so \(d \geq |p| \). As \(p \notin \{0, \pm 1\} \) we have \(|p| > 1 \). Hence also \(d > 1 \) and so \(d \neq 1 \). Thus by (++) \(d = |p| \). So \(p \mid a \) and \(\gcd(a, p) = |p| \). Thus [b] also holds in this case.

Case 2: Suppose \(p \nmid a \).

Then also \(|p| \nmid a \). As \(d = \gcd(a, p) \), we have \(d \mid a \) and so \(d \neq |p| \). Hence by (++) \(dab = 1 \). Thus \(p \mid a \) and \(\gcd(a, b) = 1 \). So [b] also holds in this case.

[c]: Suppose \(p \) and \(q \) are primes with \(p \mid q \). Since \(q \) is a prime we get \(p \in \{\pm 1, \pm q\} \). Since \(p \) is prime, \(p \notin \{\pm 1\} \) and so \(p \in \{\pm q\} \).

\[\square\]

Theorem 2.9.3. Let \(p \) be an integer with \(p \notin \{0, \pm 1\} \). Then the following two statements are equivalent:

(a) \(p \) is a prime.

(b) If \(a \) and \(b \) are integers with \(p \mid ab \), then \(p \mid a \) or \(p \mid b \).

Proof. Suppose \(p \) is prime and \(p \mid ab \) for some integers \(a \) and \(b \). If \(p \nmid a \), then by 2.9.2 \(\gcd(p, a) = 1 \). Since \(p \mid ab \), 2.8.8 implies \(p \mid b \). So \(p \mid a \) or \(p \mid b \).

For the converse, see Exercise 2.9??.
2.10 Isomorphism and Homomorphism

Definition 2.10.1. Let $(R, +, \cdot)$ and (S, \oplus, \odot) be rings and let $f : R \to S$ be a function.

(a) f is called a
\hspace{10 pt} homomorphism from $(R, +, \cdot)$ to (S, \oplus, \odot) if
\hspace{10 pt} $f(a + b) = f(a) \oplus f(b)$ \hspace{10 pt} $[f$ respects addition$]$
and \hspace{10 pt} $f(a \cdot b) = f(a) \odot f(b)$ \hspace{10 pt} $[f$ respects multiplication$]$
for all $a, b \in R$.

(b) f is called an
\hspace{10 pt} isomorphism from $(R, +, \cdot)$ to (S, \oplus, \odot), if f is a homomorphism from $(R, +, \cdot)$ to (S, \oplus, \odot) and f is 1-1 and onto

(c) $(R, +, \cdot)$ is called isomorphic to (S, \oplus, \odot), if there exists an isomorphism from $(R, +, \cdot)$ to (S, \oplus, \odot).

Example 2.10.2. (1) Consider $f : \mathbb{Z} \to \mathbb{R}, a \to a$.

Let $a, b \in \mathbb{Z}$. Then
\hspace{10 pt} $f(a + b) = a + b = f(a) + f(b)$ \hspace{10 pt} and \hspace{10 pt} $f(ab) = ab = f(a)f(b)$
\hspace{10 pt} and so f is homomorphism. f is 1-1, but not onto. Hence f is not an isomorphism.

(2) Consider $g : \mathbb{R} \to \mathbb{R}, a \to -a$.

Let $a, b \in \mathbb{R}$. Then
\hspace{10 pt} $g(a + b) = -(a + b) = -a + (-b) = g(a) + g(b)$.
\hspace{10 pt} and so g respects addition.
\hspace{10 pt} $g(ab) = -(ab) \hspace{10 pt} and \hspace{10 pt} g(a)g(b) = (-a)(-b) = ab$

For $a = b = 1$ we conclude that
\hspace{10 pt} $g(1 \cdot 1) = -(1 \cdot 1) = -1 \hspace{10 pt} and \hspace{10 pt} g(1)g(1) = 1 \cdot 1 = 1$.

So $g(1 \cdot 1) \neq g(1) \cdot g(1)$. Thus g does not respect multiplication, and g is not a homomorphism.
\hspace{10 pt} But note that g is 1-1 and onto.
(3) Let R and S be rings and consider $h : R \to S, r \to 0_S$.

Let $a, b \in R$. Then

$$g(a + b) = 0_S = 0_S + 0_S = g(a) + g(b) \quad \text{and} \quad g(ab) = 0_S = 0_S 0_S = g(a)g(b).$$

So g is a homomorphism. g is 1-1 if and only if $R = \{0_R\}$ and g is onto if and only if $S = \{0_S\}$. Hence g is an isomorphism if and only if $R = \{0_R\}$ and $S = \{0_S\}$.

(4) Let R be a ring. Consider $\text{id}_R : R \to R, r \to r$.

Let $a, b \in R$. Then

$$\text{id}_R(a + b) = a + b = \text{id}_R(a) + \text{id}_R(b) \quad \text{and} \quad \text{id}_R(ab) = ab = \text{id}_R(a)\text{id}_R(b)$$

and so id_R is a homomorphism. Since id_R is 1-1 and onto, id_R is an isomorphism.

(5) Let n be a non-zero integer. Consider $h : \mathbb{Z} \to \mathbb{Z}_n, a \to [a]_n$.

Let $a, b \in \mathbb{Z}$. By definition of addition and multiplication in \mathbb{Z}_n

$$h(a+b) = [a+b]_n = [a]_n \oplus [b]_n = h(a) \oplus h(b) \quad \text{and} \quad h(ab) = [ab]_n = [a]_n \odot [b]_n = h(a) \odot h(b).$$

So h is homomorphism. Since

$$h(n) = [n]_n = [0]_n = h(0)$$

and $n \neq 0$, h is not 1-1. So h is not isomorphism.

Let $A \in \mathbb{Z}_n$. By definition of \mathbb{Z}_n, $A = [a]_n$ for some $a \in \mathbb{Z}$. Hence $h(a) = A$ and h is onto.

Example 2.10.3. Consider the function

$$f : \mathbb{C} \to M_2(\mathbb{R}), r + si \to \begin{bmatrix} r & s \\ -s & r \end{bmatrix}$$

Let $a, b \in \mathbb{C}$. Then $a = r + si$ and $b = \tilde{r} + \tilde{s}$ for some $r, s, \tilde{r}, \tilde{s} \in \mathbb{R}$. So
\[
\begin{align*}
f(a+b) &= f\left((r+si) + (\tilde{r} + \tilde{s}i)\right) \\
&= f\left((r + \tilde{r}) + (s + \tilde{s})i\right) \\
&= \begin{bmatrix} r + \tilde{r} & s + \tilde{s} \\
-(s + \tilde{s}) & r + \tilde{r} \end{bmatrix} \\
&= \begin{bmatrix} r & s \\
-s & r \end{bmatrix} + \begin{bmatrix} \tilde{r} & \tilde{s} \\
-\tilde{s} & \tilde{r} \end{bmatrix} \\
&= f(r + si) + f(\tilde{r} + \tilde{s}i) \\
&= f(a) + f(b)
\end{align*}
\]

and

\[
\begin{align*}
f(ab) &= f\left((r + si)(\tilde{r} + \tilde{s}i)\right) \\
&= f\left((r\tilde{r} - s\tilde{s}) + (r\tilde{s} + s\tilde{r})i\right) \\
&= \begin{bmatrix} r\tilde{r} - s\tilde{s} & r\tilde{s} + s\tilde{r} \\
-(r\tilde{s} + s\tilde{r}) & r\tilde{r} - s\tilde{s} \end{bmatrix} \\
&= \begin{bmatrix} r & s \\
-s & r \end{bmatrix} \begin{bmatrix} \tilde{r} & \tilde{s} \\
-\tilde{s} & \tilde{r} \end{bmatrix} \\
&= f(r + si)f(\tilde{r} + \tilde{s}i) \\
&= f(a)f(b).
\end{align*}
\]

So \(f\) is a homomorphism. If \(f(a) = f(b)\), then

\[
\begin{bmatrix} r & s \\
-s & r \end{bmatrix} = \begin{bmatrix} \tilde{r} & \tilde{s} \\
-\tilde{s} & \tilde{r} \end{bmatrix}
\]

and so \(r = \tilde{r}\) and \(s = \tilde{s}\). Hence \(a = r + si = \tilde{r} + \tilde{s}i = b\) and so \(f\) is 1-1. Note that \(\begin{bmatrix} 1 & 0 \\
0 & 0 \end{bmatrix}\) is not of the form \(\begin{bmatrix} r & s \\
-s & r \end{bmatrix}\) and so \(f\) is not onto.

Notation 2.10.4. (a) ‘\(f : R \to S\) is a ring homomorphism’ stands for more precise ‘\((R, +, \cdot)\) and \((S, \oplus, \odot)\) are rings and \(f\) is a ring homomorphism from \((R, +, \cdot)\) to \((S, \oplus, \odot)\).’
(b) Usually we will use the symbols $+$ and \cdot also for the addition and multiplication on S and so the conditions for a homomorphism become

\[f(a + b) = f(a) + f(b) \quad \text{and} \quad f(ab) = f(a)f(b) \]

Remark 2.10.5. Let $R = \{r_1, r_2, \ldots, r_n\}$ be a ring with n elements. Suppose that the addition and multiplication table is given by

\[
\begin{array}{c|cccc}
+ & r_1 & \cdots & r_j & \cdots & r_n \\
\hline
r_1 & a_{11} & \cdots & a_{1j} & \cdots & a_{1n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_i & a_{i1} & \cdots & a_{ij} & \cdots & a_{in} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_n & a_{n1} & \cdots & a_{nj} & \cdots & a_{nn} \\
\end{array}
\quad \text{and} \quad
\begin{array}{c|cccc}
\cdot & r_1 & \cdots & r_j & \cdots & r_n \\
\hline
r_1 & b_{11} & \cdots & b_{1j} & \cdots & b_{1n} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_i & b_{i1} & \cdots & b_{ij} & \cdots & b_{in} \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_n & b_{n1} & \cdots & b_{nj} & \cdots & b_{nn} \\
\end{array}
\]

So $r_i + r_j = a_{ij}$ and $r_i r_j = b_{ij}$ for all $1 \leq i, j \leq n$.

Let S be a ring and $f : R \to S$ a function. For $r \in R$ put $r' = f(r)$. Consider the tables A' and M' obtain from the tables A and M by replacing all entries by its image under f:

\[
\begin{array}{c|cccc}
& r_1' & \cdots & r_j' & \cdots & r_n' \\
\hline
r_1' & a_{11}' & \cdots & a_{1j}' & \cdots & a_{1n}' \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_i' & a_{i1}' & \cdots & a_{ij}' & \cdots & a_{in}' \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_n' & a_{n1}' & \cdots & a_{nj}' & \cdots & a_{nn}' \\
\end{array}
\quad \text{and} \quad
\begin{array}{c|cccc}
& r_1' & \cdots & r_j' & \cdots & r_n' \\
\hline
r_1' & b_{11}' & \cdots & b_{1j}' & \cdots & b_{1n}' \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_i' & b_{i1}' & \cdots & b_{ij}' & \cdots & b_{in}' \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
r_n' & b_{n1}' & \cdots & b_{nj}' & \cdots & b_{nn}' \\
\end{array}
\]

(a) f is a homomorphism if and only if A' and M' are the tables for the addition and multiplication of the elements r_1', \ldots, r_n' in S, that is $r_i' + r_j' = a_{ij}'$ and $r_i'r_j' = b_{ij}'$ for all $1 \leq i, j \leq n$.

(b) f is 1-1 if and only if r_1', \ldots, r_n' are pairwise distinct.

(c) f is onto if and only if $S = \{r_1', r_2', \ldots, r_n'\}$.

(d) f is an isomorphism if and only if A' is an addition table for S and M' is a multiplication table for S.
Proof. (a) \(f \) is a homomorphism if and only if

\[f(a + b) = a + b \quad \text{and} \quad f(ab) = f(a)f(b) \]

for all \(a, b \in R \). Since \(R = \{r_1, \ldots, r_n\} \), this holds if and only if

\[f(r_i + r_j) = f(r_i) + f(r_j) \quad \text{and} \quad f(r_ir_j) = f(r_i)f(r_j) \]

for all \(1 \leq i, j \leq n \). Since \(r_i + r_j = a_{ij} \) and \(r_ir_j = b_{ij} \) this holds if and only if

\[f(a_{ij}) = f(r_i) + f(r_j) \quad \text{and} \quad f(b_{ij}) = f(r_i)f(r_j) \]

Since \(f(r) = r' \), this is equivalent to

\[a_{ij}' = r_i' + r_j' \quad \text{and} \quad b_{ij}' = r_i'r_j' \]

(b) \(f \) is 1-1 if and only if for all \(a, b \in R \), \(f(a) = f(b) \) implies \(a = b \) and so if and only if \(a \neq b \) implies \(f(a) \neq f(b) \). Since for each \(a \in R \) there exists a unique \(1 \leq i \leq n \) with \(a = r_i \), \(f \) is 1-1 if and only if for all \(1 \leq i, j \leq n \), \(i \neq j \) implies \(f(r_i) \neq f(r_j) \), that is \(i \neq j \) implies \(r_i' \neq r_j' \).

(c) \(f \) is onto if and only if \(\text{Im} \ f = S \). Since \(R = \{r_1, \ldots, r_n\} \), \(\text{Im} \ f = \{f(r_1), \ldots, f(r_n)\} = \{r_1', \ldots, r_n'\} \). So \(f \) is onto if and only if \(S = \{r_1', \ldots, r_n'\} \).

(d) Follows from (a)-(c).

Example 2.10.6. Let \(R \) be the ring from example 2.1.6. Then the map

\[f : R \to \mathbb{Z}_2, 0 \to [1]_2, 1 \to [0]_2 \]

is an isomorphism.

The tables for \(R \) are

\[
\begin{array}{cc}
\oplus & 0 \quad 1 \\
0 & 1 \quad 0 \\
1 & 0 \quad 1 \\
\end{array}
\quad \text{and} \quad
\begin{array}{cc}
\otimes & 0 \quad 1 \\
0 & 0 \quad 1 \\
1 & 1 \quad 1 \\
\end{array}
\]

Replacing 0 by \([1]_2\) and 1 by \([0]_2\) we obtain

\[
\begin{array}{ccc}
[1]_2 & [0]_2 \\
[1]_2 & [0]_2 & [1]_2 \\
[0]_2 & [1]_2 & [0]_2 \\
\end{array}
\quad \text{and} \quad
\begin{array}{ccc}
[1]_2 & [0]_2 \\
[1]_2 & [1]_2 & [0]_2 \\
[0]_2 & [0]_2 & [0]_2 \\
\end{array}
\]

Note that these are addition and multiplication tables for \(\mathbb{Z}_2 \) and so by 2.10.5 \(f \) is an isomorphism.
Lemma 2.10.7. Let \(f: R \to S \) be a homomorphism of rings. Then

(a) \(f(0_R) = 0_S \).

(b) \(f(-a) = -f(a) \) for all \(a \in R \).

(c) \(f(a - b) = f(a) - f(b) \) for all \(a, b \in R \).

Suppose in addition that \(R \) has an identity and \(f \) is onto, then

(d) \(S \) is a ring with identity and \(f(1_R) = 1_S \).

(e) If \(u \) is a unit in \(R \), then \(f(u) \) is a unit in \(S \) and \(f(u^{-1}) = f(u)^{-1} \).

Proof. (a) We have

\[
0_S = f(0_R) = f(0_R + 0_R) = f(0_R).
\]

So by the Additive Identity Law \(2.2.4\) \(f(0_R) = 0_S \).

(b) We compute

\[
f(a) + f(-a) = f(a + (-a)) = f(0_R) = 0_S,
\]

and so by the Additive Inverse Law \(2.2.6\) \(f(-a) = -f(a) \).

(c) \(f(a - b) = f(a + (-b)) = f(a) + f(-b) = f(a) - f(b) \).

(d) We will first show that \(f(1_R) \) is an identity in \(S \). For this let \(s \in S \). Then since \(f \) is onto, \(s = f(r) \) for some \(r \in R \). Thus

\[
s \cdot f(1_R) = f(r)f(1_R) = f(r1_R) = f(r) = s,
\]

and similarly \(f(1_R) \cdot s = s \). So \(f(1_R) \) is an identity in \(S \). By \(2.7.3\) a ring has at most one identity and so \(f(1_R) = 1_S \).

(e) Let \(u \) be a unit in \(R \). We will first show that \(f(u^{-1}) \) is an inverse of \(f(u) \):

\[
f(u)f(u^{-1}) = f(uu^{-1}) = f(1_R) = 1_S.
\]

Similarly \(f(u^{-1})f(u) = 1_S \). Thus \(f(u^{-1}) \) is an inverse of \(f(u) \) and so \(f(u) \) is a unit. By \(2.7.4\) \(f(u)^{-1} \) is the unique inverse of \(f(u) \) and so \(f(u^{-1}) = f(u)^{-1} \).

Example 2.10.8. Find all onto homomorphisms from \(\mathbb{Z}_6 \) to \(\mathbb{Z}_2 \times \mathbb{Z}_3 \).

Let \(f: \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3 \) be an onto homomorphism. For \(a, b \in \mathbb{Z} \) let

\[
[a] := [a]_6, \quad f[a] := f([a]_6), \quad \text{and} \quad [a, b] := ([a]_2, [b]_3).
\]
Since \(f \) is an onto homomorphism, we get from 2.10.7(d) that \(f(1_{\mathbb{Z}_6}) = 1_{\mathbb{Z}_2 \times \mathbb{Z}_3} \). Since \([1]\) is the identity in \(\mathbb{Z}_6\) and \([1, 1]\) is the identity in \(\mathbb{Z}_2 \times \mathbb{Z}_3\) this gives \(f[1] = [1, 1] \). Similarly, by 2.10.7(a), \(f(0_{\mathbb{Z}_6}) = 0_{\mathbb{Z}_2 \times \mathbb{Z}_3} \) and thus \(f[0] = [0, 0] \). We compute

\[
\begin{align*}
 f[0] &= [0, 0] \\
 f[1] &= [1, 1] \\
 f[2] &= f[1 + 1] = f[1] + f[1] = [1, 1] + [1, 1] = [2, 2] = [0, 2] \\
\end{align*}
\]

By 2.4.15 \(\mathbb{Z}_6 = \{[0], [1], [2], [3], [4], [5]\} \), \(\mathbb{Z}_2 = \{[0]_2, [1]_2\} \) and \(\mathbb{Z}_3 = \{[0]_3, [1]_3, [2]_3\} \). Hence \(f \) is uniquely determined and

\[
\mathbb{Z}_2 \times \mathbb{Z}_3 = \{(x, y) \mid x \in \mathbb{Z}_2, y \in \mathbb{Z}_3\} = \{[0, 0], [0, 1], [0, 2], [1, 0], [1, 1], [1, 2]\}.
\]

We conclude that \(f \) is 1-1 and onto. Moreover,

\[(*) \quad f[r] = [r, r] \text{ for all } 0 \leq r < 5.\]

We will show that the function \(f : \mathbb{Z}_6 \to \mathbb{Z}_2 \times \mathbb{Z}_3 \) defined by (*) is a homomorphism. For this we first show that \(f[m] = [m, m] \) for all \(m \in \mathbb{Z} \). Indeed, by the Division Algorithm, \(m = 6q + r \) with \(q, r \in \mathbb{Z} \) and \(0 \leq r < 6 \). Then by ?? \([m]_6 = [r]_6\) and since \(m = 2(3q) + r = 3(2q) + r \), \([m]_2 = [r]_2\) and \([m]_3 = [r]_3\). So \([m] = [r], [m, m] = [r, r]\) and

\[(***) \quad f[m] = f[r] = [r, r] = [m, m].\]

Note also that by the definition of addition and multiplication in the direct product \(\mathbb{Z}_2 \times \mathbb{Z}_3 \):

\[(****) \quad [n + m, n + m] = [n, n] + [m, m] \quad \text{and} \quad [nm, nm] = [n, n][m, m]\]

Thus

\[
\begin{align*}
 f[n + m] &= f[n + m] \quad (***) = [n, n] + [m, m] \quad (**) = f[n] + f[m], \\
 f[nm] &= f[nm] \quad (***) = [n, n][m, m] \quad (**) = f[n]f[m].
\end{align*}
\]

So \(f \) is a homomorphism of rings. Since \(f \) is 1-1 and onto, \(f \) is an isomorphism and so \(\mathbb{Z}_6 \) is isomorphic to \(\mathbb{Z}_2 \times \mathbb{Z}_3 \).
Example 2.10.9. Show that \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ are not isomorphic.

Put $R := \mathbb{Z}_2 \times \mathbb{Z}_2$. Since $x + x = [0]_2$ for all $x \in \mathbb{Z}_2$ we also have

$$(x, y) + (x, y) = (x + x, y + y) = ([0]_2, [0]_2) = 0_R.$$

for all $x, y \in \mathbb{Z}_2$. Thus

(*)

$$r + r = 0_R$$

for all $r \in R$. Let S be any ring isomorphic to R. We claim that $s + s = 0_S$ for all $s \in S$. Indeed, let $f : R \rightarrow S$ be an isomorphism and let $s \in S$. Since f is onto, there exists $r \in R$ with $f(r) = s$. Thus

$$s + s = f(r) + f(r) \overset{\text{f hom}}{=} f(r + r) \overset{(*)}{=} f(0_R) \overset{2.10.7(b)}{=} 0_S.$$

Since $[1]_4 + [1]_4 = [2]_4 \neq [0]_4$ we conclude that \mathbb{Z}_4 is not isomorphic to $\mathbb{Z}_2 \times \mathbb{Z}_2$.

Corollary 2.10.10. Let $f : R \rightarrow S$ be a homomorphism of rings. Then $\text{Im } f$ is a subring of S. (Recall here that $\text{Im } f = \{ f(r) \mid r \in R \}$).

Proof. It suffices to verify the four conditions in the Subring Theorem 2.6.2. Observe first that for $s \in S$,

(*)

$$s \in \text{Im } f \iff s = f(r) \text{ for some } r \in R$$

Let $x, y \in \text{Im } f$. Then by (**):

(**)

$$x = f(a) \text{ and } y = f(b) \text{ for some } a, b \in R.$$

(I) By 2.10.7(a) $f(0_R) = 0_S$ and so $0_S \in \text{Im } f$ by (*).

(II) $x + y \overset{**}{=} f(a) + f(b) \overset{\text{f hom}}{=} f(a + b)$. By Ax 1 $a + b \in R$. So $x + y \in \text{Im } f$ by (*).

(III) $xy \overset{**}{=} f(a)f(b) \overset{\text{f hom}}{=} f(ab)$. By Ax 6 $ab \in R$. So $xy \in \text{Im } f$ by (*).

(IV) $-x \overset{**}{=} -f(a) \overset{2.10.7(b)}{=} f(-a)$. By Ax 5 $-a \in R$. So $-x \in \text{Im } f$ by (*).

Definition 2.10.11. Let R be a ring. For $n \in \mathbb{Z}$ and $a \in R$ define $na \in R$ as follows:

(i) $0a = 0_R$.

(ii) If $n \geq 0$ and na already has been defined, define $(n + 1)a = na + a$.

(iii) If $n < 0$ define $na = -(n)a$.

Exercises 2.10:

#1. Let R be ring, $n, m \in \mathbb{Z}$ and $a, b \in R$. Show that
(a) \(1a = a\).
(b) \((-1)a = -a\).
(c) \((n + m)a = na + ma\).
(d) \((nm)a = n(ma)\).
(e) \(n(a + b) = na + nb\).
(f) \(n(ab) = (na)b = a(nb)\).

#2. Let \(f : R \to S\) be a ring homomorphism. Show that \(f(na) = nf(a)\) for all \(n \in \mathbb{Z}\) and \(a \in R\).

#3. Let \(R\) be a ring. Show that:

(a) If \(f : \mathbb{Z} \to R\) is a homomorphism, then \(f(1)^2 = f(1)\).
(b) Let \(a \in R\) with \(a^2 = a\). Then there exists a unique homomorphism \(g : \mathbb{Z} \to R\) with \(g(1) = a\).

#4. Let \(S = \left\{ \begin{bmatrix} a & b \\ b & a+b \end{bmatrix} \mid a, b \in \mathbb{Z}_2 \right\}\). Given that \(S\) is a subring of \(M_2(\mathbb{Z}_2)\). Show that \(S\) is isomorphic to the ring \(R\) from Exercise 2.1.\#1.

#5. (a) Give an example of a ring \(R\) and a function \(f : R \to R\) such that \(f(a + b) = f(a) + f(b)\) for all \(a, b \in R\), but \(f(ab) \neq f(a)f(b)\) for some \(a, b \in R\).
(b) Give an example of a ring \(R\) and a function \(f : R \to R\) such that \(f(ab) = f(a)f(b)\) for all \(a, b \in R\), but \(f(a + b) \neq f(a) + (f(b)\) for some \(a, b \in R\).

#6. Let \(L\) be the ring of all matrices in \(M_2(\mathbb{Z})\) of the form \(\begin{bmatrix} a & 0 \\ b & c \end{bmatrix}\) with \(a, b, c \in \mathbb{Z}\). Show that the function \(f : L \to \mathbb{Z}\) given by \(f\left(\begin{bmatrix} a & 0 \\ b & c \end{bmatrix} \right) = a\) is a surjective homomorphism but is not an isomorphism.

#7. Let \(n\) and \(m\) be positive integers with \(n \equiv 1 \pmod{m}\). Define \(f : \mathbb{Z}_m \to \mathbb{Z}_{nm}, [x]_m \to [xn]_{nm}\). Show that

(a) \(f\) is well-defined. (That is if \(x, y\) are integers with \([x]_m = [y]_m\), then \([xn]_{nm} = [ym]_{nm}\))
(b) \(f\) is a homomorphism.
(c) \(f\) is 1-1.
(d) If \(n > 1\), then \(f\) is not onto.

#8. Let \(f : R \to S\) be a ring homomorphism. Let \(B\) be a subring of \(S\) and define

\[A = \{ r \in R \mid f(r) \in B \}. \]

Show that \(A\) is a subring of \(R\).
2.11 Associates in commutative rings

Definition 2.11.1. Let R be a commutative ring with identity and let $a, b \in R$. We say that a is associated to b, or that b is an associate of a and write $a \sim b$ if there exists a unit u in R with $au = b$.

Lemma 2.11.2. Let n be a non-zero integer and $a \in \mathbb{Z}$. Then $\gcd(a, n) = 1$ if and only if $[a]_n$ is a unit in \mathbb{Z}_n.

Proof. Recall first from 2.5.4 that $[1]_n$ is the identity in \mathbb{Z}_n.

\Rightarrow: Suppose that $\gcd(a, n) = 1$. Then by Exercise 8 on Homework 4, $[a]_n[u]_n = [1]_n$ for some $u \in \mathbb{Z}$. Since \mathbb{Z}_n is commutative this gives $[au]_n = [1]_n$ and so $[a]_n$ is a unit.

\Leftarrow: Suppose next that $[a]_n$ is a unit. Then the definition of a unit shows that there exists U in \mathbb{Z}_n with $[a]_nU = [1]_n$. Then $U = [u]_n$ for some $u \in \mathbb{Z}$ and so $[au]_n = [a]_n[u]_n = [a]_nU = [1]_n$

Put $d = \gcd(a, n)$. Then $d \mid a$ and $d \mid n$ and Exercise 9 on Homework 8 shows that $d \mid 1$. Thus $d = 1$ and $\gcd(a, n) = 1$.

Example 2.11.3. (a) Let $n \in \mathbb{Z}$. Find all associates of n in \mathbb{Z}.

(b) Find all associates of 0, 1, 2 and 5 in \mathbb{Z}_{10}.

\[\text{By 2.7.2 the units in } \mathbb{Z} \text{ are } \pm 1. \text{ So the associates of } n \text{ are } n \cdot \pm 1, \text{ that is } \pm n. \]

\[\text{By 2.4.15 } \mathbb{Z}_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} \text{ and so } \mathbb{Z}_{10} = \{0, \pm 1, \pm 2, \pm 3, \pm 4, 5\}. \]

We compute

<table>
<thead>
<tr>
<th>n</th>
<th>0</th>
<th>± 1</th>
<th>± 2</th>
<th>± 3</th>
<th>± 4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gcd(n, 10)$</td>
<td>10</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>5</td>
</tr>
</tbody>
</table>

and so by 2.11.2 the units in \mathbb{Z}_{10} are ± 1 and ± 3.

So the associates of $a \in \mathbb{Z}_{10}$ are $a \cdot \pm 1$ and $a \cdot \pm 3$, that is $\pm a$ and $\pm 3a$. We compute

\[
\begin{array}{c|c|c}
\hline
a & \text{associates of } a & \text{associates of } a, \text{ simplified} \\
\hline
0 & \pm 0, \pm 3 \cdot 0 & 0 \\
1 & \pm 1, \pm 3 \cdot 1 & \pm 1, \pm 3 \\
2 & \pm 2, \pm 3 \cdot 2 & \pm 2, \pm 4 \\
5 & \pm 5, \pm 3 \cdot 5 & 5 \\
\hline
\end{array}
\]

Lemma 2.11.4. Let R be a commutative ring with identity. Then the relation \sim (‘is associated to’) is an equivalence relation on R.
Proof. Reflexive: Let \(a \in R \). By (Ax 10), \(1_R = 1_R1_R \). Hence \(1_R \) is a unit in \(R \). By (Ax 10) \(a1_R = a \) and so \(a \sim a \). Thus \(\sim \) is reflexive.

Symmetric: Let \(a, b \in R \) with \(a \sim b \). Then there exists a unit \(u \in R \) with \(au = b \). Since \(u \) is a unit, \(u \) has an inverse \(u^{-1} \). Hence (multiplying \(au = b \) with \(u^{-1} \))

\[
bu^{-1} = (au)u^{-1} \overset{\text{Ax} 2}{=} a(uu^{-1}) \overset{\text{def} \, u^{-1}}{=} a1_R \overset{(\text{Ax} 10)}{=} a.
\]

By \(2.7.5 \) \(u^{-1} \) is a unit in \(R \) and so \(b \sim a \). Thus \(\sim \) is symmetric.

Transitive: Let \(a, b, c \in R \) with \(a \sim b \) and \(b \sim c \). Then \(au = b \) and \(bv = c \) for some units \(u \) and \(v \in R \). Substituting the first equation in the second gives \((au)v = c \) and so by \(2.7.5 \) \(uv \) is a unit in \(R \) and so \(a \sim c \). Thus \(\sim \) is transitive.

Since \(\sim \) is reflexive, symmetric and transitive, \(\sim \) is an equivalence relation.

Example 2.11.5. Determine the equivalence classes of \(\sim \) on \(\mathbb{Z}_{10} \).

Note that for \(a \in \mathbb{Z}_{10} \), \([a]_\sim = \{b \in \mathbb{Z}_{10} | a \sim b\}\) is the set of associates of \(a \). So by Example 2.11.3

\[
[0]_\sim = \{0\} \\
[1]_\sim = \{\pm 1, \pm 3\} \\
[2]_\sim = \{\pm 2, \pm 4\} \\
[5]_\sim = \{5\}
\]

By \(2.4.15 \) \(\mathbb{Z}_{10} = \{0,1,\ldots,9\} = \{0,\pm 1,\pm 2,\pm 3,\pm 4,5\} \). So for each \(x \in \mathbb{Z}_{10} \) there exists \(y \in \{0,1,2,5\} \) with \(x \in [y]_\sim \). Thus by \(1.5.5 \) \([x]_\sim = [y]_\sim \). So \([0]_\sim, [1]_\sim, [2]_\sim, [5]_\sim\) are all the equivalence classes of \(\sim \).

Lemma 2.11.6. Let \(R \) be a commutative ring with identity and \(a, b \in R \) with \(a \sim b \). Then \(a|b \) and \(b|a \).

Proof. Since \(a \sim b \), \(au = b \) for some unit \(u \in R \). So \(a|b \).

By 2.11.4 the relation \(\sim \) is symmetric and so \(a \sim b \) implies \(b \sim a \). Thus, by the result of the previous paragraph applied with \(a \) and \(b \) interchanged, \(b|a \).

Lemma 2.11.7. Let \(R \) be a commutative ring with identity and \(r \in R \). Then the following four statements are equivalent:

(a) \(1_R \sim r \).

(b) \(r|1_R \)

(c) There exists \(s \) in \(R \) with \(rs = 1_R \).

(d) \(r \) is a unit.
2.11. ASSOCIATES IN COMMUTATIVE RINGS

Proof. (a) \(\Rightarrow \) (b): Since \(1_R \sim r \), 2.11.6 gives \(r \mid 1_R \).

(b) \(\Rightarrow \) (c): Follows from the definition of ‘divide’.

(c) \(\Rightarrow \) (d): Since \(R \) is commutative \(rs = 1_R \) implies \(sr = 1_R \). So \(r \) is a unit.

(d) \(\Rightarrow \) (a): By (Ax 10), \(1_R r = r \). Since \(r \) is a unit this gives \(1_R \sim r \) by definition of \(\sim \).

Lemma 2.11.8. Let \(R \) be a commutative ring with identity and \(a, b, c, d \in R \).

(a) If \(a \sim b \) and \(c \sim d \), then \(a \mid c \) if and only if \(b \mid d \).

(b) If \(c \sim d \), then \(a \mid c \) if and only if \(a \mid d \).

(c) If \(a \sim b \), then \(a \mid c \) if and only if \(b \mid c \).

Proof. (a) Suppose that \(a \sim b \) and \(c \sim d \).

\[\Rightarrow: \] Suppose that \(a \mid c \). Since \(a \sim b \), 2.11.6 gives \(b \mid a \). Since \(a \mid c \) and \(\mid \) is transitive (2.4.4(a)) we have \(b \mid c \). Since \(c \sim d \), 2.11.6 gives \(c \mid d \). Hence by transitivity of \(\mid \), \(b \mid d \).

\[\Leftarrow: \] Since \(\sim \) is symmetric, \(b \sim a \) and \(d \sim c \). So the result of previous paragraph applied with \(a \) and \(b \) interchanged and \(c \) and \(d \) interchanged shows that \(b \mid d \) implies \(a \mid c \).

(b) Since \(\sim \) is reflexive, \(a \sim a \). Hence (b) follows from (a) applied with \(b = a \).

(c) Since \(\sim \) is reflexive, \(c \sim c \). Hence (c) follows from (a) applied with \(c = d \).

Definition 2.11.9. Let \(R \) be a commutative ring and \(a, b \in R \). We say that \(a \) and \(b \) divide each other in \(R \) and write \(a \approx b \) if

\[a \mid b \quad \text{and} \quad b \mid a. \]

Exercises 2.11:

#1. Let \(R = \mathbb{Z}_{12} \).

(a) Find all units in \(R \).

(b) Determine the equivalence classes of the relation \(\sim \) on \(R \).

#2. Let \(R \) be a commutative ring with identity. Prove that:

(a) \(\approx \) is an equivalence relation on \(R \).

(b) Let \(a, b, c, d \in R \) with \(a \approx b \) and \(c \approx d \). Then \(a \mid c \) if and only if \(b \mid d \).

#3. Let \(n \) be a positive integer and \(a, b \in \mathbb{Z} \). Put \(d = \gcd(a, n) \) and \(e = \gcd(b, n) \). Prove that:

(a) \([a]_n \mid [d]_n \) in \(\mathbb{Z}_n \).

(b) \([a]_n \approx [d]_n \).

(c) Let \(r, s \in \mathbb{Z} \) with \(r \mid n \) in \(\mathbb{Z} \). Then \([r]_n \mid [s]_n \) in \(\mathbb{Z}_n \) if and only if \(r \mid s \) in \(\mathbb{Z} \).
(d) $[d]_n | [e]_n$ in \mathbb{Z}_n if and only if $d | e$ in \mathbb{Z}.

(e) $[a]_n | [b]_n$ in \mathbb{Z}_n if and only if $d | e$ in \mathbb{Z}.

(f) $[d]_n \approx [e]_n$ if and only if $d = e$.

(g) $[a]_n \approx [b]_n$ if and only if $d = e$.

4. Let R be an integral domain and $a, b, c \in R$ such that $a \neq 0_R$ and $ba | ca$. Then $b | c$.
Chapter 3

Polynomial Rings

3.1 Addition and Multiplication

Definition 3.1.1. Let R and P be a rings with identity and $x \in P$. Then P is called a polynomial ring with coefficients in R and indeterminate x provided that

(i) R is subring of P.

(ii) $ax = xa$ for all $a \in R$.

(iii) For each $f \in P$, there exists $n \in \mathbb{N}$ and $f_0, f_1, \ldots, f_n \in R$ such that

$$f = \sum_{i=0}^{n} f_i x^i \quad (= f_0 + f_1 x + \ldots + f_n x^n).$$

(iv) Whenever $n, m \in \mathbb{N}$ with $n \leq m$ and $f_0, f_1, \ldots, f_n, g_0, \ldots, g_m \in R$ with

$$\sum_{i=0}^{n} f_i x^i = \sum_{i=0}^{m} g_i x^i,$$

then $f_i = g_i$ for all $0 \leq i \leq n$ and $g_i = 0_R$ for all $n < i \leq m$.

Lemma 3.1.2. Let R be ring with identity and $a, b \in R$.

(a) $a^{n+m} = a^n a^m$ for all $n, m \in \mathbb{N}$.

(b) If $ab = ba$, then $ab^n = b^n a$.

Proof. (a) If $n = 0$, then $a^{n+m} = a^m = 1_R a^m = a^0 a^m$. So we may assume that $n > 0$. Similarly we may assume that $m > 0$. Then

$$a^n a^m = (a a \ldots a)(a a \ldots a) \stackrel{\text{GAL}}{=} a a \ldots a \quad = a^{n+m}$$

n-times m-times $n+m$-times
CHAPTER 3. POLYNOMIAL RINGS

(b) For \(n = 0 \) we have \(ab^0 = a1_R = a = 1_R a = b^0a \). Thus \((b)\) holds. Suppose \((b)\) holds for \(n = k \). Then

\[ab^{k+1} = a(b^k b) = (ab^k)b = (b^k a)b = b^k(ab) = (b^k b)a = b^{k+1}a. \]

Thus \((b)\) also holds for \(n = k + 1 \). So by the Principal Of Induction, \((b)\) holds for all \(n \in \mathbb{N} \). \qed

Lemma 3.1.3. Let \(R \) be a ring with identity and \(P \) a polynomial ring with coefficients in \(R \) and indeterminate \(x \). Then \(1_R = 1_P \). In particular, \(x = 1_R x \).

Proof. Let \(f \in P \). Then by definition of a polynomial ring there exists \(n \in \mathbb{N} \) and \(f_0, f_1, \ldots, f_n \in R \) with

\[f = \sum_{i=0}^{n} f_i x^i. \]

Let \(1 \leq i \leq n \). By definition of a polynomial ring \(1_R x = x 1_R \) and so by 3.1.2(b)

\[1_R x^i = x^i 1_R. \]

Thus

\[(f_i x^i) 1_R \overset{\text{Ax 7}}{=} f_i (x^i 1_R) \overset{\text{Ax 10}}{=} (f_i 1_R) x^i \]

and

\[f 1_R \overset{\text{GDL}}{=} \left(\sum_{i=0}^{n} f_i x^i \right) 1_R = \sum_{i=0}^{n} (f_i x^i) 1_R \overset{\text{Ax 10}}{=} \sum_{i=0}^{n} f_i x^i = f. \]

Similarly \(1_R f = f \) and so \(1_R \) is a multiplicative identity of \(P \). Thus \(1_R = 1_P \). Since \(x \in P \) this gives \(1_R x = p x = x \). \qed

Theorem 3.1.4. Let \(P \) be a ring with identity, \(R \) a subring of \(P \), \(x \in P \) and \(f, g \in P \). Suppose that

(i) \(ax = xa \) for all \(a \in R \);

(ii) there exist \(n \in \mathbb{N} \) and \(f_0, \ldots, f_n \in R \) with \(f = \sum_{i=0}^{n} f_i x^i \); and

(iii) there exist \(m \in \mathbb{N} \) and \(g_0, \ldots, g_m \in R \) with \(g = \sum_{i=0}^{m} g_i x^i \).

Put \(f_i = 0_R \) for \(i > n \) and \(g_i = 0_R \) for \(i > m \). Then

(a) \(f + g = \sum_{i=0}^{\max(n, m)} (f_i + g_i) x^i. \)
(b) \(fg = \sum_{i=0}^{n} \left(\sum_{j=0}^{m} f_i g_j x^{i+j} \right) = \sum_{k=0}^{n+m} \left(\sum_{i=\max(0,k-m)}^{\min(n,k)} f_i g_{k-i} \right) x^k = \sum_{k=0}^{n+m} \left(\sum_{i=0}^{k} f_i g_{k-i} \right) x^k. \)

Proof. (a) Put \(p = \max(n, m) \). Then \(f_i = 0 \) for all \(n < i \leq p \) and \(g_i = 0 \) for all \(m < i \leq p \). Hence

\[
(*) \quad f = \sum_{i=0}^{p} f_i x^i \quad \text{and} \quad g = \sum_{i=0}^{p} g_i x^i.
\]

Thus

\[
f + g = (\sum_{i=0}^{p} f_i x^i) + (\sum_{i=0}^{p} g_i x^i) - (*)
\]

\[
= \sum_{i=0}^{p} (f_i x^i + g_i x^i) - \text{GCL and GAL}
\]

\[
= \sum_{i=0}^{p} (f_i + g_i) x^i - \text{Ax 8}
\]

So (a) holds.

(b) By assumption \(ax = xa \) and so by 3.1.2(b)

\[
(**) \quad ax^n = x^n a
\]

for all \(a \in R \) and \(n \in \mathbb{N} \). We now can compute \(fg \).

\[
f g = \left(\sum_{i=0}^{n} f_i x^i \right) \cdot \left(\sum_{j=0}^{m} g_j x^j \right) - [\text{ii}] \text{ and } [\text{iii]}
\]

\[
= \sum_{i=0}^{n} \left(\sum_{j=0}^{m} (f_i x^i)(g_j x^j) \right) - \text{GDL}
\]

\[
= \sum_{i=0}^{n} \left(\sum_{j=0}^{m} (f_i x^i g_j) x^j \right) - \text{GAL}
\]

\[
= \sum_{i=0}^{n} \left(\sum_{j=0}^{m} (f_i g_j x^{i+j}) \right) - (**)\]

\[
= \sum_{i=0}^{n} \left(\sum_{j=0}^{m} (f_i g_j)(x^i x^j) \right) - \text{GAL}
\]

\[
= \sum_{i=0}^{n} \left(\sum_{j=0}^{m} (f_i g_j x^{i+j}) \right) - 3.1.2[a]
\]

Let \(k = i + j \) for some \(0 \leq i \leq n \) and \(0 \leq j \leq m \). Then

\[
0 \leq k \leq n + m, \quad i \leq k, \quad k - i = j \leq m, \quad k - m \leq i
\]

and so
CHAPTER 3. POLYNOMIAL RINGS

\[0 \leq k \leq n + m \quad \text{and} \quad \max(0, k - m) \leq i \leq \min(k, n). \]

Using the substitution \(k = i + j \) (and so \(j = k - i \)) and the GCL and GAL we therefore conclude that

\[
\sum_{i=0}^{n} \left(\sum_{j=0}^{m} f_{i}g_{j}x^{i+j} \right) = \sum_{k=0}^{n+m} \left(\sum_{i=\max(0,k-m)}^{\min(k,n)} f_{i}g_{k-i}x^{k} \right)
\]

\[
= \sum_{k=0}^{n+m} \left(\sum_{i=\max(0,k-m)}^{\min(k,n)} f_{i}g_{k-i} \right) x^{k} \quad \text{GDL}
\]

If \(0 \leq i < \max(0,k-m) \), then \(k - i > m \) and so \(g_{k-i} = 0 \). Hence \(f_{i}g_{k-i} = f_{i}0_{R} = 0_{R} \) (by 2.2.8(c)).

If \(\min(k,n) < i \leq k \) for some \(i \in \mathbb{N} \), then \(\min(n,k) \neq k \) and so \(\min(n,k) = n \) and \(n < i \). Thus \(f_{i} = 0_{R} \) and so \(f_{i}g_{k-i} = 0_{R}g_{k-i} = 0_{R} \). It follows that

\[
\sum_{i=\max(0,k-m)}^{\min(k,n)} f_{i}g_{k-i} = \sum_{i=0}^{k} f_{i}g_{k-i}
\]

and so also

\[
\sum_{k=0}^{n+m} \left(\sum_{i=\max(0,k-m)}^{\min(k,n)} f_{i}g_{k-i} \right) x^{k} = \sum_{k=0}^{n+m} \left(\sum_{i=0}^{k} f_{i}g_{k-i} \right) x^{k}.
\]

Combining (+), (++) and (+++) gives (b).

Example 3.1.5. (1) Suppose that \(R = \mathbb{Z}_{2} \), \(f = 1 + x + x^{3} \) and \(g = 1 + x^{2} + x^{3} + x^{5} \). Compute \(f + g \).

\[
f + g = (1 + x + x^{3}) + (1 + x^{2} + x^{3} + x^{5})
\]
\[
= (1 + 1) + (1 + 0)x + (0 + 1)x^{2} + (1 + 1)x^{3} + (0 + 0)x^{4} + (0 + 1)x^{5}
\]
\[
= 0 + 1x + 1x^{2} + 0x^{3} + 0x^{4} + 1x^{5}
\]
\[
= x + x^{2} + x^{5}
\]

(2) Suppose that \(R = \mathbb{Z}_{6} \), \(f = 1 + x + x^{2} \) and \(g = 1 + x + 2x^{2} + 3x^{3} \). Compute \(fg \).
3.1. ADDITION AND MULTIPLICATION

\[fg = (1 + x + 2x^2)(1 + x + 2x^2 + 3x^3) = (1 \cdot 1) + (1 \cdot 1 + 1 \cdot 1)x + (1 \cdot 2 + 1 \cdot 1 + 2 \cdot 1)x^2 + (1 \cdot 3 + 1 \cdot 2 + 2 \cdot 1)x^3 + (1 \cdot 3 + 2 \cdot 2)x^4 + (2 \cdot 3)x^5 = 1 + 2x + 5x^2 + x^3 + x^4 \]

Definition 3.1.6. Let \(R \) be a ring with identity.

(a) \(R[x] \) denotes the polynomial ring with coefficients in \(R \) and indeterminate \(x \) constructed in \(\mathbb{F} \).

(b) Let \(f \in R[x] \) and let \(n \in \mathbb{N} \) and \(a_0, a_1, \ldots, a_n \in R \) with \(f = \sum_{i=0}^{n} a_i x^i \). Let \(i \in \mathbb{N} \). If \(i \leq n \) define \(f_i = a_i \). If \(i > n \) define \(f_i = 0_R \). Then \(f_i \) is called the coefficient of \(x^i \) in \(f \). (Observe that this is well defined by 3.1.1)

(c) \(\mathbb{N}^* := \mathbb{N} \cup \{-\infty\} \). For \(n \in \mathbb{N}^* \) we define \(n + (-\infty) = -\infty \) and \(-\infty + n = -\infty \). We extend the relation \(\leq \) on \(\mathbb{N} \) to \(\mathbb{N}^* \) by declaring that \(-\infty \leq n \) for all \(n \in \mathbb{N}^* \).

(d) For \(f \in R[x] \), \(\operatorname{deg} f \) is the minimal element of \(\mathbb{N}^* \) with \(f_i = 0_R \) for all \(i \in \mathbb{N} \) with \(i > \operatorname{deg} f \). So \(\operatorname{deg} 0_R = -\infty \) and if \(f = \sum_{i=0}^{n} f_i x^i \) with \(f_n \neq 0 \), then \(\operatorname{deg} f = n \).

(e) If \(\operatorname{deg} f \in \mathbb{N} \) then \(\operatorname{lead}(f) \) is the coefficient of \(x^{\operatorname{deg} f} \) in \(f \). If \(\operatorname{deg} f = -\infty \), then \(\operatorname{lead}(f) = 0_R \).

Lemma 3.1.7. Let \(R \) be a ring with identity and \(f \in R[x] \).

(a) \(f = 0_R \) if and only if \(\operatorname{deg} f = -\infty \) and if and only if \(\operatorname{lead}(f) = 0_R \).

(b) \(\operatorname{deg} f = 0 \) if and only if \(f \in R \) and \(f \neq 0_R \).

(c) \(f \in R \) if and only if \(\operatorname{deg} f \leq 0 \) and if and only if \(f = \operatorname{lead}(f) \).

(d) \(f = \sum_{i=0}^{\operatorname{deg} f} f_i x^i \). (Here an empty sum is defined to be \(0_R \))

Proof. This follows straightforward from the definition of \(\operatorname{deg} f \) and \(\operatorname{lead} f \) and we leave the details to the reader.

Lemma 3.1.8. Let \(R \) be a ring with identity and \(f, g \in R[x] \). Then

(a) \(\operatorname{deg}(f + g) \leq \max(\operatorname{deg} f, \operatorname{deg} g) \).

(b) \(\operatorname{deg}(-f) = \operatorname{deg} f \).

(c) Exactly one of the following holds.

(1) \(\operatorname{deg}(fg) = \operatorname{deg} f + \operatorname{deg} g \) and \(\operatorname{lead}(fg) = \operatorname{lead}(f)\operatorname{lead}(g) \).

(2) \(\operatorname{deg}(fg) < \operatorname{deg} f + \operatorname{deg} g \), \(\operatorname{lead}(f)\operatorname{lead}(g) = 0_R \), \(f \neq 0_R \) and \(g \neq 0_R \).
In particular, deg fg ≤ deg f + deg g.

Proof. Put n := deg f and m := deg g. Then f = \sum_{i=0}^{n} f_i x^n and g = \sum_{i=0}^{m} g_i x^i.

(a) By 3.1.4(a), f + g = \sum_{i=0}^{\max(n,m)} (f_i + g_i)x^i and so (f + g)_k = 0_R for k > \max(\deg f, \deg g). Thus (a) holds.

(b) Note that −f = \sum_{i=0}^{n} (−f_i)x^i. As f_n ≠ 0_R we also have −f_n ≠ 0_R and so deg(−f) = deg f.

(c) Suppose first that f = 0_R. Then fg = 0_Rg = 0_R and lead(fg) = 0_R. Hence deg(fg) = −∞ = −∞ + deg g and lead(fg) = 0_R. So (c:1) holds in this case. Similarly, (c:1) holds if g = 0_R.

So suppose f ≠ 0_R ≠ g. By 3.1.3(b),

fg = \sum_{k=0}^{n+m} \left(\sum_{i=\min(0,k-m)}^{\max(k,n)} f_i g_{k-i} \right) x^k.

Thus (fg)_k = 0_R for k > n + m and so deg fg ≤ n + m. Moreover, for k = n + m we have max(0, k − m) = max(0, n) = n and min(n, k) = min(n, n + m) = n. So

(fg)_{n+m} = \sum_{i=n}^{n} f_i g_{n+m-i} = f_n g_m = \text{lead}(f)\text{lead}(g).

Suppose that lead(f)lead(g) ≠ 0_R. Then deg(f + g) = n + m and lead(fg) = lead(f)lead(g). Thus (c:1) holds.

Suppose that lead(f)lead(g) = 0_R. Then deg(f + g) < n + m and (c:2) holds.

\[\text{Theorem 3.1.9. Let } R \text{ be a commutative ring with identity. Then } R[x] \text{ is commutative.}\]

Proof. Let f, g \in R[x]. Then

\[
fg = \left(\sum_{i=0}^{n} f_i x^i \right) \left(\sum_{j=0}^{m} g_j x^j \right) = \sum_{i=0}^{n} \sum_{j=0}^{m} f_i g_{j+i} x^{i+j} = \sum_{i=0}^{n} \sum_{j=0}^{m} g_j f_{j+i} x^{i+j} = \sum_{j=0}^{m} \sum_{i=0}^{n} g_j f_{j+i} x^{i+j} = \left(\sum_{i=0}^{n} f_i x^i \right) \left(\sum_{j=0}^{m} g_j x^j \right) = gf
\]
We proved that \(fg = gf\) for all \(f, g \in R[x]\) and so \(R[x]\) is commutative.

Theorem 3.1.10. Let \(R\) be field or an integral domain. Then

(a) \(\deg(fg) = \deg f + \deg g \text{ and } \lead(fg) = \lead(f)\lead(g)\) for all \(f, g \in R[x]\).

(b) \(\deg(rf) = \deg f \text{ and } \lead(rf) = r\lead(f)\) for all \(r \in R\) and \(f \in R[x]\) with \(r \neq 0\).

(c) \(R[x]\) is an integral domain.

Proof. By Theorem 2.7.10 any field is an integral domain. So in any case \(R\) is an integral domain.

We will first show that

\[(*) \text{ If } f, g \in R \text{ with } \lead(f)\lead(g) = 0 \text{ then } f = 0 \text{ or } g = 0.\]

Indeed since \(R\) is an integral domain, \(\lead(f)\lead(g) = 0\) implies \(\lead(f) = 0 \text{ or } \lead(g) = 0\). \[3.1.7\] now implies \(f = 0 \text{ or } g = 0\).

(a) By \([3.1.8](c)\)

(1) \(\deg(fg) = \deg f + \deg g \text{ and } \lead(fg) = \lead(f)\lead(g), \text{ or}\)

(2) \(\deg(fg) < \deg f + \deg g, \text{ lead}(fg) = \text{ lead}(f)\text{lead}(g) = 0_R, \text{ f \neq 0_R and g \neq 0_R}.\)

In the first case \((a)\) holds. The second case contradicts \((*)\) and so does not occur.

(b) By \((3.1.7)\) \(\deg r = 0\) and \(\lead r = r\). So \((b)\) follows from \((a)\).

(c) By \((3.1.9)\) \(R[x]\) is a commutative ring with identity \(1_R\). Note that \(1_{R[x]} = 1_R
eq 0_R = 0_{R[x]}\). Let \(fg \in R[x]\) with \(fg = 0_R\). Then by \((a)\) \(\text{lead}(f)\text{lead}(g) = \text{lead}(fg) = \text{lead}(0_R) = 0_R\) and by \((*)\), \(f = 0_R \text{ or } g = 0_R\). Hence \(R[x]\) is an integral domain. \(\square\)

Theorem 3.1.11 (Division Algorithm). Let \(F\) be a field and \(f, g \in F[x]\) with \(g \neq 0_F\). Then there exist uniquely determined \(q, r \in F[x]\) with

\[f = gq + r \text{ and } \deg r < \deg g.\]

Proof. Fix \(g \in F[x]\) with \(g \neq 0_F\). For \(n \in \mathbb{N}\) let \(P(n)\) be the statement:

\[P(n) : \text{ If } f \in R[x] \text{ with } \deg f \leq n, \text{ then there exists } q, r \in F[x] \text{ with } f = gq + r \text{ and } \deg r < \deg g.\]

Let \(k \in \mathbb{N}\) such that \(P(n)\) holds for all \(n \in \mathbb{N}\) with \(n < k\). We will show that \(P(k)\) holds. So let \(f \in F[x]\) with \(\deg f \leq k\). Put \(m = \deg g\). Note that \(f = g \cdot 0_R + f\). So if \(k < m\), then \(P(k)\) holds for \(f\) with \(q = 0_R\) and \(r = f\).

So we may assume that \(k \geq m\). Since \(g \neq 0_R\) we have \(m = \deg g \in \mathbb{N}\) and \(g_m \neq 0_F\). As \(F\) is a field this implies that \(g_m\) is a unit in \(F\). Define

\[(1) \quad \tilde{f} := f - g \cdot g_m^{-1} f_k x^{k - m}.\]
CHAPTER 3. POLYNOMIAL RINGS

Since \(-g\) has degree \(m\) and \(g^{-1}_m f_k x^{k-m}\) has degree \(k - m\), \[3.1.8\] shows that \(-g \cdot g^{-1}_m f_k x^{k-m}\) has degree at most \(m + (k - m) = k\). Since \(f\) has degree at most \(k\) we conclude from \[3.1.8\] that

\[
\deg \tilde{f} = \deg(f - g \cdot g^{-1}_m f_k x^{k-m}) \leq \max(\deg f, \deg(-g \cdot g^{-1}_m f_k x^{k-m})) \leq k.
\]

The coefficient of \(x^k\) in \(\tilde{f}\) is \(f_k - g_m g^{-1}_m f_k = f_k - f_k = 0_F\). Thus \(\deg \tilde{f} \neq k\) and so \(\deg \tilde{f} \leq k - 1\). By the induction assumption, \(P(k-1)\)-holds and so there exist \(\tilde{q}\) and \(\tilde{r} \in F[x]\) with

\[
(2) \quad \tilde{f} = g\tilde{q} + \tilde{r} \quad \text{and} \quad \deg \tilde{r} < \deg g.
\]

We compute

\[
(3) \quad f = \tilde{f} + g \cdot f_k g^{-1}_m x^{k-m} - (1) = (g\tilde{q} + \tilde{r}) + g \cdot g^{-1}_m f_k x^{k-m} - (2) = (g\tilde{q} + g \cdot g^{-1}_m f_k x^{k-m}) + \tilde{r} - \text{Ax 2} \text{ Ax 3} = g \cdot (\tilde{q} + g^{-1}_m f_k x^{k-m}) + \tilde{r} - \text{Ax 8}
\]

Put \(q = \tilde{q} + g^{-1}_m f_k x^{k-m}\) and \(r = \tilde{r}\). Then by (3), \(f = qg + r\) and by (2), \(\deg r = \deg \tilde{r} < \deg g\). Thus \(P(k)\) is proved.

By the Principal of Complete Induction \[1.4.4\] we conclude that \(P(n)\) holds for all \(n \in \mathbb{N}\). This shows the existence of \(q\) and \(r\).

To show uniqueness suppose that for \(i = 1, 2\) we have \(q_i, r_i \in F[x]\) with

\[
(4) \quad f = gq_i + r_i \quad \text{and} \quad \deg r_i < \deg g.
\]

Then

\[
gq_1 + r_1 = gq_2 + r_2
\]

and so

\[
(5) \quad g \cdot (q_1 - q_2) = r_2 - r_1.
\]

Suppose \(q_1 - q_2 \neq 0_F\) Then \(\deg(q_1 - q_2) \geq 0\) and so

\[
\deg g \leq \deg g + \deg(q_1 - q_2) \quad \text{Ax 10} \text{ Ax 3} \quad \deg(g \cdot (q_1 - q_2)) \quad \text{(5)} \quad \deg(r_1 - r_2) \quad \text{Ax 8} \leq \max(\deg r_1, \deg r_2) \quad \text{(4)} \quad \deg g.
\]

(Note here that we can apply \[3.1.10\] since \(F\) is a field.)

This contradiction shows \(q_1 - q_2 = 0_F\). Hence, by (5) also \(r_2 - r_1 = g \cdot (q_1 - q_2) = g \cdot 0_F = 0_F\). Thus \(q_1 = q_2\) and \(r_1 = r_2\), see \[2.2.8\].

\[\square\]
3.1. ADDITION AND MULTIPLICATION

Definition 3.1.12. Let F be field and $f, g \in F[x]$ with $g \neq 0_F$. Let $q, r \in F[x]$ be the unique polynomials with

$$f = gq + r \quad \text{and} \quad \deg r < \deg g$$

Then r is called the remainder of f when divided by g.

Example 3.1.13. Consider the polynomials $f = x^4 + x^3 - x + 1$ and $g = -x^2 + x - 1$ in $\mathbb{Z}_3[x]$. Compute the remainder of f when divided by g.

\[
\begin{array}{c|ccc}
-x^2 + x - 1 & -x^2 & + x & - 1 \\
\hline
x^4 & + x^3 & - x & + 1 \\
x^4 & - x^3 & + x^2 & - x^3 & - x^2 & - x & + 1 \\
\hline & x^2 & - x & + 1 \\
\end{array}
\]

Since $\deg x = 1 < 2 = \deg(-x^2 + x - 1)$, the remainder of $x^4 + x^3 - x + 1$ when divided by $-x^2 + x + 1$ in $\mathbb{Z}_3[x]$ is x.

Exercises 3.1:

#1. Perform the indicated operation and simplify your answer:

(a) $(3x^4 + 2x^3 - 4x^2 + x + 4) + (4x^3 + x^2 + 4x + 3)$ in $\mathbb{Z}_5[x]$.

(b) $(x + 1)^3$ in $\mathbb{Z}_3[x]$.

(c) $(x - 1)^5$ in $\mathbb{Z}_5[x]$.

(d) $(x^2 - 3x + 2)(2x^3 - 4x + 1) \in \mathbb{Z}_7[x]$.

#2. Find polynomials q and r such that $f = gq + r$ and $\deg r < \deg g$.

(a) $f = 3x^4 - 2x^3 + 6x^2 - x + 2$ and $g = x^2 + x + 1$ in $\mathbb{Q}[x]$.

(b) $f = x^4 - 7x + 1$ and $g = 2x^2 + 1$ in $\mathbb{Q}[x]$.

(c) $f = 2x^4 + x^2 - x + 1$ and $g = 2x - 1$ in $\mathbb{Z}_5[x]$.

(d) $f = 4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $g = 3x^2 + 2$ in $\mathbb{Z}_7[x]$.

#3. Let R be a commutative ring. If $a_n \neq 0_R$ and $a_0 + a_1 x + \ldots + a_n x^n$ is a zero-divisor in $R[x]$, then a_n is a zero divisor in R.

#4. (a) Let R be an integral domain and $f, g \in R[x]$. Assume that the leading coefficient of g is a unit in R. Verify that the Division algorithm holds for f as dividend and g as divisor.

(b) Give an example in $\mathbb{Z}[x]$ to show that part (a) may be false if the leading coefficient of g is not a unit. [Hint: Exercise 4.1.5(b).]

3.2 Divisibility in $F[x]$

In a general commutative ring it may or may not be easy to decide whether a given element divides another. But for polynomial over a field it is easy, thanks to the division algorithm:

Lemma 3.2.1. Let F be a field and $f, g \in F[x]$ with $g \neq 0_F$. Then g divides f in $F[x]$ if and only if the remainder of f when divided by g is 0_F.

Proof. \implies: Suppose that $g | f$. Then by Definition 2.4.1 $f = gq$ for some $q \in F[x]$. Thus $f = gq + 0_F$. Since $\deg 0_F = -\infty < \deg g$, Definition 3.1.12 shows that 0_F is the remainder of f when divided by g.

\impliedby: Suppose that the remainder of f when divided by g is 0_F. Then by Definition 2.4.12 $f = gq + 0_F$ for some $q \in F[x]$. Thus $f = gq$ and so Definition 2.4.1 shows that $g | f$. \hfill \square

Lemma 3.2.2. Let R be a field or an integral domain and $f, g \in R[x]$. If $g \neq 0_R$ and $f \mid g$, then $\deg f \leq \deg g$.

Proof. Since $f \mid g$, $g = fh$ for some $h \in R[x]$. If $h = 0_R$, then by 2.2.8(c), $g = fh = f0_R = 0_R$, contrary to the assumption. Thus $h \neq 0_R$ and so $\deg h \geq 0$. Thus by 3.1.10(a),

$$\deg g = \deg fh = \deg f + \deg h \geq \deg f.$$ \hfill \square

Lemma 3.2.3. Let F be a field and $f \in F[x]$. Then the following statements are equivalent:

(a) $\deg f = 0$.

(b) $f \in F$ and $f \neq 0_F$.

(c) $f \mid 1_F$.

(d) $f \sim 1_F$.

(e) f is a unit in $F[x]$.

Proof. (a) \implies (b): See 3.1.7(b).

(b) \implies (c): Suppose that $f \in F$ and $f \neq 0_F$. Since F is a field, f has an inverse $f^{-1} \in F$. Then $f^{-1} \in F[x]$ and $ff^{-1} = 1_F$. Thus $f \mid 1_F$ by definition of ‘divide’ and (c) holds.

(c) \implies (d) and (d) \implies (c): See 2.11.7.

(e) \implies (a): Since f is a unit, $1_F = fg$ for some $g \in F[x]$. So by 3.1.10(a) $\deg f + \deg g = \deg(fg) = \deg(1_F) = 0$ and so also $\deg f = \deg g = 0$. \hfill \square
Lemma 3.2.4. Let F be a field and $f, g \in F[x]$. Then the following statements are equivalent:

(a) $f \sim g$.
(b) $f|g$ and $g|f$.
(c) $\deg f = \deg g$ and $f|g$.
(d) $g \sim f$.

Proof. (a) \Rightarrow (b): See 2.11.8.

(b) \Rightarrow (c): Suppose that $f|g$ and $g|f$. We need to show that $\deg f = \deg g$. Assume first that $g = 0_F$, then since $g|f$, we get from 2.4.3 that $f = 0_F$. Hence $f = g$ and so also $\deg g = \deg f$ and thus (c) holds. Similarly, (c) holds if $f = 0_F$.

Assume that $f \neq 0_F$ and $g \neq 0_F$. Since $f|g$ and $g|f$ we conclude from 3.2.2 that $\deg f \leq \deg g$ and $\deg g \leq \deg f$. Thus $\deg g = \deg f$ and (c) holds.

(c) \Rightarrow (d): Suppose that $\deg f = \deg g$ and $f|g$. If $f = 0_F$, then $\deg g = \deg f = -\infty$ and so $g = 0_F$. Hence $f = g$ and so $f \sim g$ since \sim is reflexive.

Thus we may assume $f \neq 0_F$. Since $f|g$, $g = fh$ for some $h \in F[x]$. Thus by 3.1.10(a), $\deg g = \deg f + \deg h$. Since $f \neq 0_F$ we have $\deg g = \deg f \neq -\infty$ and so $\deg h = 0$. Thus by 3.2.3, h is a unit. So $g \sim f$ by definition of \sim.

(d) \Rightarrow (a): This holds since \sim is symmetric by 2.11.4.

Definition 3.2.5. Let F be a field and $f \in F[x]$.

(a) f is called monic if $\text{lead}(f) = 1_F$.

(b) If $f \neq 0_F$ then $\hat{f} := \text{lead}(f)^{-1} f$ is called the monic polynomial associated to f. If $f = 0_F$ put $\hat{f} = 0_F$.

Lemma 3.2.6. Let F be a field and $f, g \in F[x]$.

(a) $\hat{f} \sim f$.

(b) If f and g are monic and $f \sim g$, then $f = g$.

(c) If $f \neq 0_F$, then \hat{f} is the unique monic polynomial associated to f.

(d) $\deg \hat{f} = \deg f$.

(e) $f \sim g$ if and only if $\hat{f} = \hat{g}$.

Proof. Recall from 2.11.4 that \sim is an equivalence relation and so reflexive, symmetric and transitive.

(a) Suppose that $f = 0_F$. Then $\hat{f} = 0_F$ and so $f \sim \hat{f}$ as \sim is reflexive.

Suppose that $f \neq 0_F$. Then also $\text{lead}(f) \neq 0_F$ and so by 3.2.3, $\text{lead}(f)$ is a unit in $F[x]$. Also $\hat{f} = \text{lead}(f)^{-1} f = f \text{lead}(f)^{-1}$ and so $\hat{f} \sim f$.

(b) By definition of $f \sim g$ we have $fu = g$ for some unit u in $F[x]$. By 3.2.3, $0_F \neq u \in F$. Hence
1_F \text{ } g \text{ monic } \Rightarrow \text{ lead}(g) = \text{ lead}(f_u) \text{ } \Rightarrow \text{ lead}(f) = 1_F \text{ } (\text{Ax } 10)

and so \(u = 1_F \) and \(g = f_u = f 1_F = f \).

(c) Suppose \(f \neq 0_F \). By 3.1.10(b) Then

\[
\text{lead}(f) = \text{lead}(\text{lead}^{-1}(f)) = 1_F.
\]

So \(f \) is monic. By (a) we have \(f \sim f \) and so \(f \) is a monic polynomial associated to \(f \).

Suppose \(g \) is a monic polynomial with \(g \sim f \). Since \(\sim \) is symmetric we get we get \(f \sim g \). By (a) \(f \sim f \). As \(\sim \) is transitive this gives \(f \sim g \). Since both \(f \) and \(g \) are monic we conclude from (b) that \(g = f \).

(d) By (a) \(f \sim f \) and so by 3.2.4 \(\text{deg } f = \text{deg } f \).

(e) By (a) \(f \sim f \) and \(g \sim g \). Thus by 1.5.5

\[
[f]_\sim \sim [g]_\sim \text{ and } [g]_\sim \sim [f]_\sim.
\]

Using this we get

\[
f \sim g \iff [f]_\sim = [g]_\sim \quad \text{1.5.5}
\]

\[
[f]_\sim = [g]_\sim \iff [f]_\sim = [g]_\sim \quad \text{1.5.5}
\]

\[
[f]_\sim = [g]_\sim \iff f \sim g \quad \text{1.5.5}
\]

\[
[f]_\sim = [g]_\sim \iff f \sim g \quad \text{1.5.5}
\]

Definition 3.2.7. Let \(F \) be a field and \(f, g \in F[x] \).

(a) \(h \in F[x] \) is called a common divisor of \(f \) and \(g \) provided that \(h \mid f \) and \(h \mid g \).

(b) Let \(d \in F[x] \). We say that \(d \) is a greatest common divisor of \(f \) and \(g \) and write

\[
d = \gcd(f, g)
\]

provided that

(i) \(d \) is a common divisor of \(f \) and \(g \),

(ii) If \(c \) is a common divisor of \(f \) and \(g \), then \(\deg c \leq \deg d \), and

(iii) \(d \) is monic.

Lemma 3.2.8. Let \(F \) be a field and \(f, g, q, d, u \in F[x] \). Suppose that
3.2. **DIVISIBILITY IN** $F[x]$

(i) u is a unit in $F[x]$,

(ii) $f = gq + ru$, and

(iii) $d = \gcd(g, r)$

Then $d = \gcd(f, g)$

Proof. By definition of a greatest common divisor, $d | g$ and $d | r$. Since $f = gq + ru$ we conclude from 2.4.4 that $d | f$. Thus d is a common divisor of f and g.

Let c be any common divisor of f and g. Since $f = gq + ru$ and u is a unit we have $r = f \cdot u^{-1} - g \cdot qu^{-1}$. Thus 2.4.4 implies that $d | r$. So c is a common divisor of g and r. As d is a greatest common divisor of g and r we conclude that $\deg c \leq \deg d$. Thus d is a greatest common divisor of f and g.

Theorem 3.2.9 (Euclidean Algorithm). Let F be a field and $f, g \in F[x]$ with $g \neq 0_F$ and let E_{-1} and E_0 be the equations

\[
E_{-1} : f = f \cdot 1_F + g \cdot 0_F \\
E_0 : g = f \cdot 0_F + g \cdot \text{lead}(g)^{-1}.
\]

Let $i \in \mathbb{N}$ and suppose inductively we defined equations $E_k, -1 \leq k \leq i$ of the form

\[
E_k : r_k = f \cdot x_k + g \cdot y_k.
\]

where $r_k, x_k, y_k \in F[x]$ and r_i is monic. According to the division algorithm, let $t_{i+1}, q_{i+1} \in F[x]$ with

\[
r_{i-1} = r_i q_{i+1} + t_{i+1} \quad \text{and} \quad \deg t_{i+1} < \deg r_i
\]

If $t_{i+1} \neq 0_F$, put $u_{i+1} = \text{lead}(t_{i+1})^{-1}$. Let E_{i+1} be equation of the form $r_{i+1} = f \cdot x_{i+1} + g \cdot y_{i+1}$ obtained by first subtracting q_{i+1} times equation E_i from E_{i-1} and then multiplying the resulting equation by u_{i+1}. Continue the algorithm with $i + 1$ in place of i.

If $t_{i+1} = 0_F$, define $d = r_i, u = x_i$ and $v = y_i$. Then

\[
d = \gcd(f, g) \quad \text{and} \quad d = fu + gv
\]

and the algorithm stops.

Proof. For $i \in \mathbb{N}$ let $P(i)$ be the following statement:

(1) For $-1 \leq k \leq i$ an equation E_k of the form $r_k = f \cdot x_k + g \cdot y_k$ with r_k, x_k and $y_k \in F[x]$ has been defined;

(2) for $-1 \leq k \leq i$ the equation E_k is true;

(3) r_i is monic;
(4) for all $1 \leq k \leq i$, $\deg r_k < r_{k-1}$; and

(5) If $d \in F[x]$ with $d = \gcd(r_{i-1}, r_i)$ then $d = \gcd(f, g)$.

Put $r_{-1} = f, x_{-1} = 1_F, y_{-1} = 0_F, r_0 = \tilde{g}, x_0 = 0_F$ and $y_0 = \lead(g)^{-1}$. Then for $k = -1$ and

$k = 0$, E_k is the equation $r_k = f \cdot x_k + g \cdot y_k$ and so (1) holds for $i = 0$. Also E_{-1} and E_0 are true, so (2) holds for $i = 0$. $r_0 = \tilde{g}$ is monic and so (3) holds for $i = 0$. There is no integer k with $1 \leq k \leq 0$ and thus (4) holds for $i = 0$. Assume $d \in F[x]$ with $d = \gcd(r_{-1}, r_0)$. Then $d = \gcd(f, \tilde{g})k$. Note that $g = f \cdot 0_F + \tilde{g} \cdot \lead(g)$. As $\lead(g)$ is a unit in $F[x]$ we conclude from 3.2.8 that $d = \gcd(f, g)$.

Thus $P(0)$ holds. Suppose now that $i \in \mathbb{N}$ and that $P(i)$ holds. Then the equations

$$E_{i-1} : r_{i-1} = f \cdot x_{i-1} + g \cdot y_{i-1} \text{ and}$$

$$E_i : r_i = f \cdot x_i + g \cdot y_i.$$

are defined and true. Also r_k, x_k and y_k are in $F[x]$ for $k = i - 1$ and i.

Since r_i is monic, $r_i \neq 0_F$ and so by the Division algorithm there exist unique q_{i+1} and t_{i+1} in $F[x]$ with

\[(*) \quad r_{i-1} = r_i q_i + t_{i+1} \text{ and } \deg t_{i+1} < \deg r_i \]

Consider the case that $t_{i+1} \neq 0_F$. Subtracting q_{i+1} times E_i from E_{i-1} we obtain the true equation

$$r_{i-1} - r_i q_{i+1} = f \cdot (x_{i-1} - x_i q_{i+1}) + g \cdot (y_{i-1} - y_i q_{i+1}).$$

Put $u_{i+1} = (\lead(t_{i+1}))^{-1}$. Multiplying the preceding equation with u_{i+1} gives the true equation

$$E_{i+1} : (r_{i-1} - r_i q_{i+1}) u_{i+1} = f \cdot (x_{i-1} - x_i q_{i+1}) u_{i+1} + g \cdot (y_{i-1} - y_i q_{i+1}) u_{i+1}.$$

Putting $r_{i+1} = (r_{i-1} - r_i q_{i+1}) u_{i+1}$, $x_{i+1} = (x_{i-1} - x_i q_{i+1}) u_{i+1}$ and $y_{i+1} = (y_{i-1} - y_i q_{i+1}) u_{i+1}$ we see that E_{i+1} is the equation $r_{i+1} = f \cdot x_{i+1} + g \cdot y_{i+1}$ and r_{i+1}, x_{i+1} and y_{i+1} are in $F[x]$. So (1) and (2) hold for $i + 1$ in place of i.

By (*) we have $t_{i+1} = r_{i-1} - r_i q_{i+1}$ and so

$$r_{i+1} = (r_{i-1} - r_i q_{i+1}) u_{i+1} = t_{i+1} u_{i+1} = t_{i+1} \lead(t_{i+1})^{-1} = \tilde{t}_{i+1}.$$

Hence

$$r_{i+1} = \tilde{t}_{i+1}$$

Thus r_{i+1} is monic and (3) holds. Moreover, $t_{i+1} = r_{i+1} \lead(t_{i+1})$ and (*) gives

$$r_{i-1} = r_i q_i + r_{i+1} \lead(t_{i+1}).$$
Hence, if \(d \in F[x] \) with \(d = \gcd(r_i, r_{i+1}) \), we conclude from 3.2.8 that \(d = \gcd(r_{i-1}, r_i) \). As 3.2.8 holds, this gives \(d = \gcd(f, g) \) and so \(\boxed{5} \) in \(P(i+1) \) holds. We proved that \(P(i) \) implies \(P(i+1) \) and so by the principle of induction, \(P(i) \) holds for all \(i \in \mathbb{N} \), which are reached before the algorithm stops. Note here that Condition (4) ensures that the algorithm stops in finitely many steps.

Suppose next that \(t_{i+1} = 0_F \). Note that by 3.2.2 any common divisor of \(r_i \) and \(0_F \) has degree at most \(\deg r_i \). Since \(r_i \) is monic common divisor of \(r_i \) and \(0_F \) we conclude that \(r_i = \gcd(r_i, 0_F) \). As \(t_{i+1} = 0_F \), (*) implies that \(r_{i-1} = r_i q_i + 0_F \) and so 3.2.8 shows that \(r_i = \gcd(r_{i-1}, r_i) \). As 3.2.8 holds, this shows that \(r_i = \gcd(f, g) \).

By 3.2.10 the equation

\[
E_i : \quad r_i = f \cdot x_i + g \cdot y_i
\]

is true. So putting \(d = r_i, u = x_i \) and \(v = y_i \) we have

\[
d = \gcd(f, g) \quad \text{and} \quad fu + gv
\]

Example 3.2.10. Let \(f = 3x^4 + 4x^3 + 2x^2 + x + 1 \) and \(g = 2x^3 + x^2 + 2x + 3 \) in \(\mathbb{Z}_5[x] \). Find \(u, v \in \mathbb{Z}_2[x] \) such that \(fu + gv = \gcd(f, g) \).

In the following if \(a \) in integer, we just write \(a \) for \([a]_5 \). We have

\[
\text{lead}(g)^{-1} = 2^{-1} = 2^{-1} \cdot 1 = 2^{-1} \cdot 6 = 3
\]

and so \(r_0 = \tilde{g} = 3g = 6x^3 + 3x^2 + 6x + 9 = x^3 + 3x^2 + x + 4 \).

\[
E_{-1} : \quad 3x^4 + x^3 + 2x^2 + x + 1 = f \cdot 1 + g \cdot 0
\]

\[
E_0 : \quad x^3 + 3x^2 + x + 4 = f \cdot 0 + g \cdot 3
\]

\[
\frac{3x}{x^3 + 3x^2 + x + 4} \left(\frac{3x^4 + 4x^3 + 2x^2 + x + 1}{3x^4 + 9x^3 + 3x^2 + 2x} - x^2 - x + 1 \right)
\]

Subtracting \(3x \) times \(E_0 \) from \(E_{-1} \) we get

\[
-x^2 - x + 1 = f \cdot 1 + g \cdot -9x \quad | \quad E_{-1} - E_0 \cdot 3x
\]

and multiplying with \((-1)^{-1} = -1 \) gives
\[E_1 : x^2 + x - 1 = f \cdot 1 + g \cdot 4x \]

\[
\begin{array}{c|ccccc}
 & x^3 & + & 3x^2 & + & x & + & 4 \\
\hline
x^2 + x - 1 & x^3 & + & x^2 & - & x \\
\hline
 & 2x^2 & + & 2x & + & 4 \\
 & 2x^2 & + & 2x & - & 2 \\
\hline
 & 1
\end{array}
\]

Subtracting \(x + 2 \) times \(E_1 \) from \(E_0 \) gives

\[1 = f \cdot \left(0 - (-1)(x + 2) \right) + g \cdot \left(3 - (4x)(x + 2) \right) \]

and so

\[E_2 : 1 = f \cdot (x + 2) + g \cdot (x^2 + 2x + 3) \]

Since \(x + 2 \) is monic, this equation is \(E_2 \). The remainder of any polynomial when divided by 1 is zero, so the algorithm stops here. Hence

\[\gcd(f, g) = 1 = f \cdot (x + 2) + g \cdot (x^2 + 2x + 3) \]

Theorem 3.2.11. Let \(F \) be a field and \(f, g \in F[x] \) not both 0_F.

(a) There exists a unique greatest common divisor \(d \) of \(f \) and \(g \).

(b) There exists \(u, v \in F[x] \) with \(d = fu + gv \).

(c) If \(c \) is a common divisor of \(f \) and \(g \), then \(c \mid d \).

Proof. By the Euclidean algorithm 3.2.9 there exist \(u, v \in F[x] \) such that \(d := fu + gv \) is a greatest common divisor \(f \) and \(g \). This proves the existence of \(d \) and (b).

To prove (c) let \(c \) be any common divisor of \(a \) and \(b \). Since \(d = fu + gv \) we conclude from 2.4.4 that \(c \mid d \).

It remains to prove the uniqueness of a greatest common divisor. So let \(e \) be any greatest common divisor of \(f \) and \(g \). Then \(e \) divides \(f \) and \(g \) and (c) shows that \(e \mid d \). Since both \(d \) and \(e \) are greatest common divisors of \(f \) and \(g \) we have \(\deg e \leq \deg d \) and \(\deg e \leq \deg d \). Thus \(\deg d = \deg e \). Since also \(e \mid d \) we conclude from 3.2.4 that \(d \sim e \). As \(d \) and \(e \) are monic this implies that \(d = e \), see 3.2.6(b). Thus \(d \) is the unique greatest common divisor of \(f \) and \(g \). \[\square \]
3.2. DIVISIBILITY IN $F[x]$

Definition 3.2.12. Let F be a field and $f, g \in F[x]$. f and g are called relatively prime if f and g are not both 0_F and $\gcd(f, g) = 1_F$.

Corollary 3.2.13. Let F be a field and $f, g \in F[x]$. Then f and g are relatively prime if and only if there exist $u, v \in F[x]$ with $fu + gv = 1_F$.

Proof. \implies: Suppose that f and g are relatively prime. Then f and g are not both 0_F and $\gcd(f, g) = 1_F$. So by 3.2.11(c) there exist $u, v \in F[x]$ with $fu + gv = 1_F$.

\impliedby: Suppose that there exist $u, v \in F[x]$ with $fu + gv = 1_F$. Since $1_F \neq 0_F$ this implies that f and g are not both 0_F. Let c be any common divisor of f and g. Since $1_F = fu + gv$ we conclude that $c \mid 1_F$ (see 2.4.4(2)). Hence $\deg c \leq \deg 1_F$ by 3.2.2. Thus 1_F is a greatest common divisor of f and g and so f and g are relatively prime.

Proposition 3.2.14. Let F be a field and $f, g, h \in F[x]$. Suppose that f and g are relatively prime and $f \mid gh$. Then $f \mid h$.

Proof. Since f and g are relatively prime shows that there exist $u, v \in F[x]$ with $fu + gv = 1_F$. Multiplication with h gives $(fu)h + (gv)h = h$ and so (using the General Commutative Law)

$$f \cdot (uh) + (gh) \cdot v = h.$$

Since f divides f and f divides gh, 2.4.4 now implies that $f \mid h$.

Exercises 3.2:

1. Let F be a field and $a, b \in F$ with $a \neq b$. Show that $x + a$ and $x + b$ are relatively prime in $F[x]$.

2. Use the Euclidean Algorithm to find the gcd of the given polynomials in the given polynomial ring.

 (a) $x^4 - x^3 - x^2 + 1$ and $x^3 - 1$ in $\mathbb{Q}[x]$.

 (b) $x^5 + x^4 + 2x^3 - x^2 - x - 2$ and $x^4 + 2x^3 + 5x^2 + 4x + 4$ in $\mathbb{Q}[x]$.

 (c) $x^4 + 3x^2 + 2x + 4$ and $x^2 - 1$ in $\mathbb{Z}_5[x]$.

 (d) $4x^4 + 2x^3 + 6x^2 + 4x + 5$ and $3x^3 + 5x^2 + 6x$ in $\mathbb{Z}_7[x]$.

 (e) $x^3 - ix^2 + 4x - 4i$ and $x^2 + 1$ in $\mathbb{C}[x]$.

 (f) $x^4 + x + 1$ and $x^2 + x + 1$ in $\mathbb{Z}_2[x]$.

3. Let F be a field and $f \in F[x]$ such that $f \mid g$ for every non-constant polynomial $g \in F[x]$. Show that f is a constant polynomial.

4. Let F be a field and $f, g, h \in F[x]$ with f and g relatively prime. If $f \mid h$ and $g \mid h$, prove that $fg \mid h$.

#5. Let F be a field and $f, g, h \in F[x]$. Suppose that $g \neq 0_F$ and $\gcd(f, g) = 1_F$. Show that $\gcd(fh, g) = \gcd(h, g)$.

#6. Let F be a field and $f, g \in F[x]$ such that h is non-zero and one of f and g is non-zero. Let $d = \gcd(f, g)$ and let $\hat{f}, \hat{g} \in F[x]$ with $f = \hat{f}d$ and $g = \hat{g}d$. Then $\gcd(\hat{f}, \hat{g}) = 1_F$.

#7. Let F be a field and $f, g, h \in F[x]$ with $f|gh$. Show that there exist $\tilde{g}, \tilde{h} \in F[x]$ with $\tilde{g}|g, \tilde{h}|h$ and $f = \tilde{g}\tilde{h}$.

3.3 Irreducible Polynomials

Definition 3.3.1. Let F be a field and $f \in F[x]$.

(a) f is called constant if $f \in F$, that is if $\deg f \leq 0$.

(b) Then f is called irreducible provided that

(i) f is not constant, and

(ii) if $g \in F[x]$ with $g|f$, then

$$g \sim 1_F \text{ or } g \sim f.$$

(c) f is called reducible provided that

(i) $f \neq 0_F$, and

(ii) there exists $g \in F[x]$ with

$$g|f, \quad g \sim 1_F, \quad \text{and} \quad g \sim f.$$

Proposition 3.3.2. Let F be a field and $0_F \neq f \in F[x]$. Then the following statements are equivalent:

(a) f is reducible.

(b) f is divisible by a non-constant polynomial of lower degree.

(c) f is the product of two polynomials of lower degree.

(d) f is the product of two non-constant polynomials of lower degree.

(e) f is the product of two non-constant polynomials.

(f) f is not constant and f is not irreducible.
3.3. IRREDUCIBLE POLYNOMIALS

Proof. (a) \Rightarrow (b): Suppose f is reducible. Then by Definition 3.3.1 there exist $g \in F[x]$ with $g|f$, $g \sim 1_F$ and $g \sim f$. As $g|f$ and $f \neq 0_F$ we have $g \neq 0_F$ (see 2.4.3). By 3.2.3 all non-zero constant are associated to 1_F. Since $g \sim 1_F$ we conclude that g is not constant. By 3.2.4 if $g|f$ and $\deg f = \deg g$, then $g \sim f$. As $g|f$ and $g \sim f$ we conclude that $\deg f \neq \deg g$. Also by 3.2.2 since $g|f$ we have $\deg g \leq \deg f$ and so $\deg g < \deg f$. Thus g is a non-constant polynomials of lower degree than f which divides f. Thus (b) holds.

(b) \Rightarrow (c): Let g be a non-constant polynomial of lower degree than f with $g|f$. Then $\deg g > 0$, $\deg g < \deg f$ and $f = gh$ for some $h \in F[x]$. Since $f \neq 0_F$ we conclude $h \neq 0_F$. By 3.1.10(a) $\deg f = \deg g + \deg h$ and since $\deg g > 0$, $\deg h < \deg f$. Thus (c) holds.

(c) \Rightarrow (d): Suppose $f = gh$ with $\deg g < \deg f$ and $\deg h < \deg f$. By 3.1.10 $\deg f = \deg g + \deg h$. Since $\deg g < \deg f$ we conclude that $\deg h > 0$. So h is not constant. Similarly g is not constant. Thus (d) holds.

(d) \Rightarrow (e): Obvious.

(e) \Rightarrow (f): Suppose $f = gh$ where g and h are non-constant polynomials in $F[x]$. Then $g|f$. Since g is not constant, Lemma 3.2.3 gives $g \sim 1_F$. Since $\deg h > 0$ and $\deg f = \deg g + \deg h$ (3.1.10(a)) we have $\deg f > \deg g$. Since g is not constant, $\deg g > 0$ and so also $\deg f > 0$ and f is not constant. Also $\deg f \neq \deg g$ and 3.2.4 gives $g \sim f$. Thus by Definition 3.3.1 f is not irreducible. So (f) holds.

(f) \Rightarrow (a): Suppose f is not constant and f is not irreducible. Then by Definition 3.3.1 there exists $g \in F[x]$ with $g|f$, $g \sim 1_F$ and $g \sim f$. So by Definition 3.3.1 f is reducible and (a) holds.

Remark 3.3.3. Let F be a field.

(a) A non-constant polynomial in $F[x]$ is reducible if and only if its is not irreducible.

(b) A constant polynomial in $F[x]$ is neither reducible nor irreducible.

Proof. Let $f \in F[x]$ with $f \neq 0_F$. Then 3.3.2(a), (f) shows that

(*) f is reducible if and only if f non-constant and f is not irreducible.

[a]: Let f be non-constant polynomial in $F[x]$. Then $f \neq 0_R$ and (*) shows that f is reducible if and only if f is not irreducible.

[b]: By definition irreducible polynomials are not constant. Let $f \in F[x]$ be reducible. By definition of a reducible polynomial, $f \neq 0_R$ and so (*) shows that f is not constant.

Lemma 3.3.4. Let F be a field and p a non-constant polynomial in $F[x]$. Then the following statement are equivalent:

(a) p is irreducible.

(b) Whenever $g, h \in F[x]$ with $p|gh$, then $p|g$ or $p|h$.
(c) Whenever \(g, h \in F[x] \) with \(p = gh \), then \(g \) or \(h \) is constant.

Proof. \[(a) \implies (b) \]: Suppose \(p \) is irreducible and let \(g, h \in F[x] \) with \(p|gh \). Put \(d := \gcd(p, g) \). By definition of \(\gcd \), \(d|p \) and since \(p \) is irreducible, \(d \sim 1_F \) or \(d \sim p \). We treat these two cases separately.

Suppose that \(d \sim 1_F \). Since both \(d \) and \(1_F \) are monic we conclude from \(\text{3.2.6} \) that \(d = 1_F \). So \(p \) and \(g \) are relatively prime and, since \(p|gh \), \(\text{3.2.14} \) implies \(p|h \).

If \(d \sim p \), then since \(d|g \), \(\text{2.11.8} \) gives \(p|g \).

\[(b) \implies (c) \]: Suppose \((b) \) holds and let \(g, h \in F[x] \) with \(p|gh \). Note that \(p = p1_F \). So \(p|p \) and since \(p = gh \) we get \(p|gh \). From \((b) \) we conclude \(p|g \) or \(p|h \). Since the situation is symmetric in \(g \) and \(h \) we may assume \(p|g \). Since \(p \neq 0_F \) and \(p = gh \) we get \(g \neq 0_F \) and \(h \neq 0_F \). From \(p|g \) and \(\text{3.2.2} \) we have \(\deg p \leq \deg g \). On the other hand by \(\text{3.1.10} \), \(\deg p = \deg gh = \deg g + \deg h \geq \deg g \). Thus \(\deg g = \deg p \) and \(\deg h = 0 \). So \(h \in F \).

\[(c) \implies (a) \]: Suppose \((c) \) hold. Then \(p \) is not a product of two constant polynomials in \(F[x] \). Hence \(\text{3.3.2(a)} \) shows that \(p \) is reducible. Since \(p \) is not constant, this means that \(p \) is reducible (see \(\text{3.3.3(a)} \)).

Lemma 3.3.5. Let \(F \) be a field and let \(p \) be an irreducible polynomial in \(F[x] \). If \(a_1, \ldots, a_n \in F[x] \) and \(p|a_1a_2\ldots a_n \), then \(p|a_i \) for some \(1 \leq i \leq n \).

Proof. By induction on \(n \). For \(n = 1 \) the statement is obviously true. So suppose the statement is true for \(n = k \) and that \(p|a_1 \ldots a_k a_{k+1} \). By \(\text{3.3.4} \) \(p|a_1 \ldots a_k \) or \(p|a_{k+1} \). In the first case the induction assumption implies that \(p|a_i \) for some \(1 \leq i \leq k \). So in any case \(p|a_i \) for some \(1 \leq i \leq k + 1 \). Thus the Lemma holds for \(k + 1 \) and so by the Principal of Mathematical Induction \(\text{1.4.2} \) the Lemma holds for all positive integer \(n \).

Lemma 3.3.6. Let \(F \) be a field and \(p, q \) irreducible polynomials in \(F[x] \). Then \(p|q \) if and only if \(p \sim q \).

Proof. If \(p \sim q \), then \(p|q \), by \(\text{2.11.6} \). So suppose that \(p|q \). Since \(q \) is irreducible, \(p \sim 1_F \) or \(p \sim q \).

Since \(p \) is irreducible, \(p \notin F \) and so by \(\text{3.2.3} \) \(p \sim 1_F \). Thus \(p \sim q \).

Lemma 3.3.7. Let \(F \) be a field and \(f, g \in F[x] \) with \(f \sim g \). Then \(f \) is irreducible if and only if \(g \) is irreducible.

Proof. \(\implies \): Suppose \(f \) is irreducible. Then \(f \notin F \) and so \(\deg f \geq 1 \). Since \(f \sim g \), \(\text{3.2.4} \) implies \(\deg g = \deg f \geq 1 \). Hence \(g \notin F \). Let \(h \in F[x] \) with \(h|g \). Since \(f \sim g \), \(\text{2.11.8} \) implies \(h|f \). Since \(f \) is irreducible we conclude \(h \sim 1_F \) or \(h \sim f \). In the latter case, since \(\sim \) is transitive \(\text{2.11.4} \) \(h \sim g \). Hence \(h \sim 1_F \) or \(h \sim g \) and so \(g \) is irreducible.

\(\iff \): Suppose \(g \) is irreducible. Since \(\sim \) is symmetric by \(\text{2.11.4} \) we have \(g \sim f \). So we can apply the \(\iff \) case with \(f \) and \(g \) interchanged to conclude that \(f \) is irreducible.

Theorem 3.3.8 (Unique Factorization Theorem). Let \(F \) be a field and \(f \) a non-constant polynomial in \(F[x] \).
3.3. IRREDUCIBLE POLYNOMIALS

(a) \(f \) is the product of irreducible polynomials in \(F[x] \).

(b) If \(n, m \) are positive integers and \(p_1, p_2, \ldots, p_n \) and \(q_1, \ldots, q_m \) are irreducible polynomials in \(F[x] \) with

\[
f = p_1p_2 \cdots p_n \quad \text{and} \quad f = q_1q_2 \cdots q_m,
\]

then \(n = m \) and possibly after reordering the \(q_i \)'s,

\[
p_1 \sim q_1, \quad p_2 \sim q_2, \quad \ldots, \quad p_n \sim q_n.
\]

In more precise terms: there exists a bijection \(\pi : \{1, \ldots, n\} \to \{1, \ldots, m\} \) such that

\[
p_1 \sim q_{\pi(1)}, \quad p_2 \sim q_{\pi(2)}, \quad \ldots, \quad p_n \sim q_{\pi(n)}.
\]

Proof. (a) The proof is by complete induction on \(\deg f \). So suppose that every non-constant polynomial of lower degree than \(f \) is a product of irreducible polynomials.

Suppose that \(f \) is irreducible. Then \(f \) is the product of one irreducible polynomial (namely itself).

Suppose \(f \) is not irreducible. Since \(f \notin F \), 3.3.2 shows that \(f = gh \) where \(g \) and \(h \) are non-constant polynomials of lower degree than \(f \). By the induction assumption both \(g \) and \(h \) are products of irreducible polynomials. Hence also \(f = gh \) is the product of irreducible polynomials.

(b) The proof of (a) is by complete induction on \(n \). So let \(k \) be a positive integer and suppose that (b) holds whenever \(n < k \).

Suppose also that

\[
(*) \quad f = p_1p_2 \cdots p_k \quad \text{and} \quad f = q_1q_2 \cdots q_m,
\]

where \(m \) is a positive integer and \(p_1, \ldots, p_k, q_1, \ldots, q_m \) are irreducible polynomials in \(F[x] \).

Suppose first that \(f \) is irreducible. Then by 3.3.2 \(f \) is not the product of two non-constant polynomials in \(F[x] \). Hence (*) implies \(k = m = 1 \). Thus \(p_1 = f = q_1 \). Since \(\sim \) is reflexive this gives \(p_1 \sim q_1 \) and so (b) holds for \(n = k \) in this case.

Suppose next that \(f \) is not irreducible. Then \(p_1 \neq f \neq q_1 \) and so \(k \geq 2 \) and \(m \geq 2 \).

Since \(f = (p_1 \cdots p_{k-1})p_k \) we see that \(p_k \) divides \(f \). By (*) \(f = q_1 \cdots q_m \) and so \(p_k \) divides \(q_1 \cdots q_m \). Hence by 3.3.3 \(p_k | q_j \) for some \(1 \leq j \leq m \). As \(p_k \) and \(q_j \) are irreducible we get from 3.3.6 that \(p_k \sim q_j \).

Reordering the \(q_i \)'s we may assume that

\[
p_k \sim q_m.
\]

Then \(p_k = q_m u \) for some unit \(u \in F[x] \). Thus

\[
((p_1 u)p_2 \cdots p_{k-1})q_m = (p_1 \cdots p_{k-1})(q_m u) = p_1 \cdots p_{k-1}p_k = f = (q_1 \cdots q_{m-1})q_m.
\]

By 3.1.10(c) \(F[x] \) is an integral domain. Since \(q_m \neq 0_F \), the Cancellation Law 2.7.7 gives

\[
(p_1 u)p_2 \cdots p_{k-1} = q_1 \cdots q_{m-1}.
\]
Since u is a unit, $p_1u \sim p_1$. Thus since p_1 is irreducible also p_1u is irreducible by 3.3.7. The induction assumption now implies that $k - 1 = m - 1$ and that, after reordering the q_i’s,

$$p_1u \sim q_1, \quad p_2 \sim q_2, \quad \ldots \quad p_{k-1} \sim q_{k-1}.$$

From $k - 1 = m - 1$ we get $k = m$. As $p_1 \sim p_1u$ and $p_1u \sim q_1$ we have $p_1 \sim q_1$, by transitivity of \sim. Thus

$$p_1 \sim q_1, \quad p_2 \sim q_2, \quad \ldots \quad p_{k-1} \sim q_{k-1}.$$

Moreover, as $p_k \sim q_m$ and $m = k$ we have $p_k \sim q_k$. Thus (b) holds for $n = k$. By the principal of complete induction, (b) holds for all positive integers n. \hfill \Box

Exercises 3.3:

#1. Find all irreducible polynomials of

(a) degree two in $\mathbb{Z}_2[x]$.

(b) degree three in $\mathbb{Z}_2[x]$.

(c) degree two in $\mathbb{Z}_3[x]$.

#2. (a) Show that $x^2 + 2$ is irreducible in $\mathbb{Z}_5[x]$.

(b) Factor $x^4 - 4$ as a product of irreducibles in $\mathbb{Z}_5[x]$.

#3. Let F be a field. Prove that every non-constant polynomial f in $F[x]$ can be written in the form $f = cp_1p_2\ldots p_n$ with $c \in F$ and each p_i monic irreducible in $F[x]$. Show further that if $f = dq_1\ldots q_m$ with $d \in F$ and each q_i monic and irreducible in $F[x]$, then $m = n$, $c = d$ and after reordering and relabeling, if necessary, $p_i = q_i$ for each i.

#4. Let F be a field and $p \in F[x]$ with $p \notin F$. Show that the following two statements are equivalent:

(a) p is irreducible

(b) If $g \in F[x]$ then $p|g$ or $\gcd(p, g) = 1_F$.

#5. Let F be a field and let p_1, p_2, \ldots, p_n be irreducible monic polynomials in $F[x]$ such that $p_i \neq p_j$ for all $1 \leq i < j \leq n$. Let $f, g \in F[x]$ and suppose that $f = p_1^{k_1}p_2^{k_2}\ldots p_n^{k_n}$ and $g = p_1^{l_1}p_2^{l_2}\ldots p_n^{l_n}$ for some $k_1, k_2, \ldots, k_n, l_1, l_2, \ldots, l_n \in \mathbb{N}$.

(a) Show that $f|g$ in $F[x]$ if and only if $k_i \leq l_i$ for all $1 \leq i \leq n$.

(b) For $1 \leq i \leq n$ define $m_i = \min(k_i, l_i)$. Show that $\gcd(f, g) = p_1^{m_1}p_2^{m_2}\ldots p_n^{m_n}$.
3.4 Polynomial function

Theorem 3.4.1. Let R and S be commutative rings with identities, $\alpha : R \to S$ a homomorphism of rings with $\alpha(1_R) = 1_S$ and let $s \in S$.

(a) There exists a unique ring homomorphism $\alpha_s : R[x] \to S$ such that $\alpha_s(x) = s$ and $\alpha_s(r) = \alpha(r)$ for all $r \in R$.

(b) For all $f = \sum_{i=0}^{\deg f} f_i x^i \in R[x]$, $\alpha_s(f) = \sum_{i=0}^{\deg f} \alpha(f_i) s^i$.

Proof. Suppose first that $\beta : R[x] \to S$ is a ring homomorphism with

$$\beta(x) = s \quad \text{and} \quad \beta(r) = \alpha(r)$$

for all $r \in R$. Let $f \in R[x]$. Then

$$\beta(f) = \beta \left(\sum_{i=0}^{\deg f} f_i x^i \right) = \beta \left(\sum_{i=0}^{\deg f} \beta(f_i) x^i \right) = \sum_{i=0}^{\deg f} \beta(f_i) \beta(x)^i = \sum_{i=0}^{\deg f} \alpha(f_i) s^i.$$ \hfill (*)

This proves (b) and the uniqueness of α_s.

It remains to prove the existence. We use (b) to define α_s. That is we define

$$\alpha_s : R[x] \to S, \quad f \mapsto \sum_{i=0}^{\deg f} \alpha(f_i) s^i.$$

It follows that

$$\alpha_s(x) = \alpha_s(1_R x) = \alpha(1_R) s = 1_S s = s$$

and if $r \in R$, then

$$\alpha_s(r) = \alpha_s(r x^0) = \alpha(r) s^0 = \alpha(r) 1_S = \alpha(r).$$

Let $f, g \in R[x]$. Put $n = \max(\deg f, \deg g)$ and $m = \deg f + \deg g$.

$$\alpha_s(f + g) = \alpha_s \left(\sum_{i=0}^{n} (f_i + g_i)x^i \right) = \sum_{i=0}^{n} \alpha(f_i + g_i)s^i$$

- 3.1.4(a) with $R[x]$ in place of P

$$= \sum_{i=0}^{n} \left(\alpha(f_i) + \alpha(g_i) \right)s^i$$
- definition of α_s

$$= \left(\sum_{i=0}^{\deg f} \alpha(f_i)s^i \right) + \left(\sum_{i=0}^{\deg g} \alpha(g_i)s^i \right)$$
- 3.1.4(a) with (S, S, x) in place of (R, P, x)

$$= \alpha_s(f) + \alpha_s(g)$$
- definition of α_s, twice

$$\alpha_s(fg) = \alpha_s \left(\sum_{k=0}^{m} \left(\sum_{i=0}^{k} f_i g_{k-i} \right)x^k \right) = \sum_{k=0}^{m} \alpha \left(\sum_{i=0}^{k} f_i g_{k-i} \right)s^k$$
- definition of α_s

$$= \sum_{k=0}^{m} \left(\sum_{i=0}^{k} \alpha(f_i)\alpha(g_{k-i}) \right)s^k$$
- Since α is a homomorphism

$$= \left(\sum_{i=0}^{\deg f} \alpha(f_i)s^i \right) \cdot \left(\sum_{j=0}^{\deg g} \alpha(g_j)s^j \right)$$
- 3.1.4(a) with (S, S, x) in place of (R, P, x)

$$= \alpha_s(f) \cdot \alpha_s(g)$$
- definition of α_s, twice

So α_s is a homomorphism and the Theorem is proved.

Example 3.4.2. Compute α_s in the following cases:

1. R is a commutative ring with identity, $S = R$, $\alpha = \text{id}_R$ and $s \in R$.
2. R is a commutative ring with identity, $S = R[x]$, $\alpha(r) = r$ and $s = x$.
3. $R = \mathbb{Z}$, n is an integer, $S = \mathbb{Z}_n[x]$, $\alpha(r) = [r]_n$ and $s = x$.

(1) $\alpha_s(f) = \sum_{i=0}^{\deg f} \alpha(f_i)s^i = \sum_{i=0}^{\deg f} f_is^i$.

(2) $\alpha_s(f) = \sum_{i=0}^{\deg f} \alpha(f_i)s^i = \sum_{i=0}^{\deg f} f_ix^i = f$

So α_s is identity function on $R[x]$.
Note first that by Example 2.10.2 \(\alpha : \mathbb{Z} \rightarrow \mathbb{Z}_n[x], r \rightarrow [r]_n \) is a homomorphism. Also

\[
\alpha_s(f) = \sum_{i=0}^{\deg f} \alpha(f_i) s^i = \sum_{i=0}^{\deg f} [f_i]_n x^i
\]

So \(\alpha_s(f) \) is obtain from \(f \) by viewing each coefficient as congruence class modulo \(n \) rather than an integer.

Definition 3.4.3. Let \(I \) be a set and \(R \) a ring.

(a) \(\text{Fun}(I, R) \) is the set of all functions from \(I \) to \(R \).

(b) For \(\alpha, \beta \in \text{Fun}(I, R) \) define \(\alpha + \beta \) in \(\text{Fun}(I, R) \) by

\[
(\alpha + \beta)(i) = \alpha(i) + \beta(i)
\]

for all \(i \in I \).

(c) For \(\alpha, \beta \in \text{Fun}(I, R) \) define \(\alpha \beta \) in \(\text{Fun}(I, R) \) by

\[
(\alpha \beta)(i) = \alpha(i) \beta(i)
\]

for all \(i \in I \).

(d) For \(r \in R \) define \(r^* \in \text{Fun}(I, R) \) by

\[
r^*(i) = r
\]

for all \(i \in I \).

(e) \(\text{Fun}(R) = \text{Fun}(R, R) \).

Lemma 3.4.4. Let \(I \) be a set and \(R \) a ring.

(a) \(\text{Fun}(I, R) \) together with the above addition and multiplication is a ring.

(b) \(0^*_R \) is the additive identity in \(\text{Fun}(I, R) \).

(c) If \(R \) has a multiplicative identity \(1_R \), then \(1^*_R \) is a multiplicative identity in \(\text{Fun}(I, R) \).

(d) \((-\alpha)(i) = -\alpha(i) \) for all \(\alpha \in \text{Fun}(I, R), i \in I \).

(e) The function \(\tau : R \rightarrow \text{Fun}(I, R), r \rightarrow r^* \) is a homomorphism. If \(I \neq \emptyset \), than \(\tau \) is 1-1.

Proof. Note that \(\text{Fun}(I, R) = \bigtimes_{i \in I} R \) and so (a)-(d) follow from F.1.2

Let \(a, b \in R \) and \(i \in I \). Then

\[
(a + b)^*(i) = a + b \quad \text{-- definition of } (a + b)^*
\]

\[
= a^*(i) + b^*(i) \quad \text{-- definition of } a^* \text{ and } b^*
\]

\[
= (a^* + b^*)(i) \quad \text{-- definition of addition of functions}
\]
Thus \((a + b)^* = a^* + b^*\) by \ref{1.3.11} and so \(\tau(a + b) = \tau(a) + \tau(b)\) by definition of \(\tau\).

Similarly,

\[
(ab)^*(i) = ab - \text{definition of } (ab)^* \\
= a^*(i)b^*(i) - \text{definition of } a^* \text{ and } b^* \\
= (a^*b^*)(i) - \text{definition of multiplication of function}
\]

Hence \((ab)^* = a^*b^*\) by \ref{1.3.11} and so \(\tau(ab) = \tau(a)\tau(b)\) by definition of \(\tau\).
Thus \(\tau\) is a homomorphism.

Suppose that \(I \neq \emptyset\) and \(\tau(a) = \tau(b)\). Then \(a^* = b^*\) and there exists \(i \in I\). So \(a = a^*(i) = b^*(i) = b\) and \(\tau\) is 1-1. \(\square\)

Notation 3.4.5. Let \(R\) be a commutative ring with identity and \(f \in R[x]\). For \(f = \sum_{i=0}^{\deg f} f_i x^i \in P[x]\) define the function

\[
f^* : R \to R
\]

by

\[
f^*(r) = \sum_{i=0}^{\deg f} f_i r^i
\]

for all \(r \in R\).

\(f^*\) is called the polynomial function on \(R\) induced by \(f\).

Remark 3.4.6. Let \(R\) be a commutative ring with identity.

(a) Let \(\text{id} : R \to R, r \to r\) be the identity function on \(R\) and for \(r \in R\) let \(\text{id}_r : R[x] \to R\) be the homomorphism from \ref{3.4.1}. Then

\[
f^*(r) = \text{id}_r(f)
\]

for all \(f \in F[x]\) and \(r \in R\).

(b) Let \(f \in R[x]\) be constant polynomial. Then the definitions of \(f^* \in \text{Fun}(R)\) in \ref{3.4.5} and in \ref{3.4.3} coincide.

Proof. (a) By Example \ref{3.4.2} \(\text{id}_r(f) = \sum_{i=0}^{\deg f} f_i r^i\) and so \(\text{id}_r(f) = f^*(r)\).

(b) Since \(f \in F\), \(f = f x^0\) and so \(f^*(r) = f\) for all \(r \in R\). \(\square\)

The following example shows that it is very important to distinguish between a polynomial \(f\) and its induced polynomial function \(f^*\).

Example 3.4.7. Determine the functions induced by the polynomials of degree at most two in \(\mathbb{Z}_2[x]\).
We conclude that \(x^* = (x^2)^* \). So two distinct polynomials can lead to the same polynomial function. Also \((x^2 + x)^*\) is the zero function but \(x^2 + x\) is not the zero polynomial.

Theorem 3.4.8. Let \(R \) be commutative ring with identity.

(a) \(f^* \in \text{Fun}(R) \) for all \(f \in R[x] \).

(b) \((f + g)^*(r) = f^*(r) + g^*(r) \) and \((fg)^*(r) = f^*(r)g^*(r) \) for all \(f, g \in R[x] \) and \(r \in R \).

(c) \((f + g)^* = f^* + g^* \) and \(f^*g^* = f^*g^* \) for all \(f, g \in R[x] \).

(d) The function \(R[x] \to \text{Fun}(R), f \to f^* \) is a ring homomorphism.

Proof. (a) By definition \(f^* \) is a function from \(R \) to \(R \). Hence \(f^* \in \text{Fun}(R) \).

\[
(f + g)^*(r) = \text{id}_r(f + g) \quad -3.4.6[a]
\]

\[
= \text{id}_r(f) + \text{id}_r(g) \quad -\text{id}_r \text{ is a homomorphism}
\]

\[
= f^*(r) + g^*(r) \quad -3.4.6[a], \text{twice}
\]

and similarly

\[
(fg)^*(r) = \text{id}_r(fg) \quad -3.4.6[a]
\]

\[
= \text{id}_r(f)\text{id}_r(g) \quad -\text{id}_r \text{ is a homomorphism}
\]

\[
= f^*(r)g^*(r) \quad -3.4.6[a], \text{twice}
\]

(c) Let \(r \in R \). Then

\[
(f + g)^*(r) = f^*(r) + g^*(r) \quad -[b]
\]

\[
= (f^* + g^*)(r) \quad -\text{Definition of addition in Fun}(R)
\]

So \((f + g)^* = f^* + g^* \). Similarly

\[
(fg)^*(r) = f^*(r)g^*(r) \quad -[b]
\]

\[
= (f^*g^*)(r) \quad -\text{Definition of multiplication in Fun}(R)
\]

and so \((fg)^* = f^*g^* \).

(d) Follows from (c).
Lemma 3.4.9. Let \(F \) be a field, \(f \in F[x] \) and \(a \in F \). Then the remainder of \(f \) when divided by \(x - a \) is \(f^*(a) \).

Proof. Let \(r \) be the remainder of \(f \) when divided by \(x - a \). So \(r \in F[x] \), \(\deg r < \deg(x - a) \) and there exists \(q \in F[x] \) with

\[
(*) \quad f = q \cdot (x - a) + r.
\]

Since \(\deg(x - a) = 1 \) we have \(\deg r \leq 0 \) and so \(r \in F \). Thus

\[
(**) \quad r^*(t) = r
\]

for all \(t \in R \).

\[
\begin{align*}
 f^*(a) & \overset{(*)}{=} (q \cdot (x - a) + r)^*(a) & \overset{3.4.8(b)}{=} (q \cdot (x - a))^*(a) + r^*(a) \\
 & \overset{3.4.8}{{}} q^*(a) \cdot (x - a)^*(a) + r^*(a) & \overset{\text{Def } (x - a)^*}{{}} q^*(a)(a - a) + r^*(a) \\
 & \overset{(**)}{=} q^*(a)(a - a) + r & \overset{2.2.8(d)}{=} q^*(a) \cdot 0_F + r \\
 & \overset{\text{Ax } 4}{{}} 0_F + r & = r
\end{align*}
\]

\[\square\]

Definition 3.4.10. Let \(R \) be a commutative ring with identity, \(f \in R[x] \) and \(a \in R \). Then \(a \) is called a root of \(f \) if \(f^*(a) = 0_R \).

Theorem 3.4.11 (Factor Theorem). Let \(F \) a field, \(f \in F[x] \) and \(a \in F \). Then \(a \) is a root of \(f \) if and only if \(x - a | f \).

Proof. Let \(r \) be the remainder of \(f \) when divided by \(x - a \). Then

\[
\begin{align*}
 x - a | f & \iff r = 0_F & \overset{3.2.1}{{}} \\
 & \iff f^*(a) = 0_F & \overset{3.4.9}{{}} f^*(a) = r \\
 & \iff a \text{ is a root of } f & - \text{Definition of root}
\end{align*}
\]

\[\square\]

Lemma 3.4.12. Let \(R \) be commutative ring with identity and \(f \in R[x] \).

(a) Let \(g \in R[x] \) with \(g | f \). Then any root of \(g \) in \(R \) is also a root of \(f \) in \(R \).

(b) Let \(a \in R \) and \(g, h \in R[x] \) with \(f = gh \). Suppose that \(R \) is field or an integral domain. Then \(a \) is a root of \(f \) if and only if \(a \) is a root of \(g \) or \(a \) is a root of \(h \).
3.4. POLYNOMIAL FUNCTION

Proof. (a): Let \(a \) be a root of \(g \). Then \(g^*(a) = 0_R \). Since \(g|f \), there exists \(h \in R[x] \) with \(f = gh \). Then

\[
f^*(a) = (gh)^*(a) = g^*(a)h^*(a) = 0_R \cdot h^*(a) = 0_R.
\]

Thus \(a \) is a root of \(f \). So (a) holds.

(b): Suppose that \(R \) is field or an integral domain. By 2.7.10 all fields are integral domains. Thus \(R \) is an integral domain and so (Ax 11) holds. Hence

\[
a \text{ is a root of } f \iff f^*(a) = 0_R \quad \text{definition of root}
\]
\[
\iff (gh)^*(a) = 0_R \quad \text{\(f = gh \)}
\]
\[
\iff g^*(a)h^*(a) = 0_R \quad \text{3.4.8(c)}
\]
\[
\iff g^*(a) = 0_R \quad \text{or} \quad h^*(a) = 0_R \quad \text{(Ax 11)}
\]
\[
\iff a \text{ is a root of } g \quad \text{or} \quad a \text{ is a root of } h \quad \text{definition of root, twice}
\]

Example 3.4.13. (1) Let \(R \) be a commutative ring with identity and \(a \in R \). Find the roots of \(x - a \) in \(R \).

Let \(b \in R \). Then \((x - a)^*(b) = b - a \). So \(b \) is a root of \(x - a \) if and only if \(b - a = 0_R \) and if and only if \(b = a \). Hence \(a \) is the only root of \(x - a \).

(2) Find the roots of \(x^2 - 1 \) in \(\mathbb{Z} \). Note that

\[
x^2 - 1 = (x - 1)(x + 1) = (x - 1)(x - (-1)).
\]

Since \(\mathbb{Z} \) is an integral domain, 3.4.12 show that the roots of \(x^2 - 1 \) are the roots of \(x - 1 \) together with the roots of \(x - (-1) \). So by (1) the roots of \(x^2 - 1 \) are 1 and \(-1\).

(3) Find the roots of \(x^2 - 1 \) in \(\mathbb{Z}_8 \).

Since \(\mathbb{Z}_8 \) is not an integral domain, the argument in (2) does not work. We compute in \(\mathbb{Z}_8 \)

\[
0^2 - 1 = -1, (\pm 1)^2 - 1 = 1 - 1 = 0, (\pm 2)^2 - 1 = 4 - 1 = 3, (\pm 3)^2 = 9 - 1 = 8 = 0, 4^2 - 1 = 15 = 1.
\]

So the roots of \(x^2 - 1 \) are \(\pm 1 \) and \(\pm 3 \). Note here that \((3 - 1)(3 + 1) = 2 \cdot 4 = 8 = 0 \). So the extra root 3 comes from the fact that \(2 \cdot 4 = 0 \) in \(\mathbb{Z}_8 \) but neither 2 nor 4 is zero.

Theorem 3.4.14 (Root Theorem). Let \(F \) be a field and \(f \in F[x] \) a non-zero polynomial.

Then there exist a non-negative integer \(m \), elements \(a_1, \ldots, a_m \in F \) and \(q \in F[x] \) such that
(a) \(m \leq \deg f \).

(b) \(f = q \cdot (x - a_1) \cdot (x - a_2) \cdot \ldots \cdot (x - a_m) \).

(c) \(q \) has no roots in \(F \).

(d) \(\{a_1, a_2, \ldots, a_m\} \) is the set of roots of \(f \) in \(F \).

In particular, the number of roots of \(f \) is at most \(\deg f \).

Proof. The proof is by complete induction on \(\deg f \). So let \(k \in \mathbb{N} \) and suppose that theorem holds for polynomials of degree less than \(k \). Let \(f \) be a polynomial of degree \(k \).

Suppose that \(f \) has no roots. Then the theorem holds with \(q = f \) and \(m = 0 \).

Suppose next that \(f \) has a root \(a \). Then by the Factor Theorem 3.4.11, \(x - a \) \(| \) \(f \) and so

\[
(*) \quad f = g \cdot (x - a)
\]

for some \(g \in F[x] \). By 3.1.10 \(\deg f = \deg g + \deg(x - a) = \deg g + 1 \) and so \(\deg g = k - 1 \). Hence by the induction assumption there exist a non-negative integer \(n \), elements \(a_1, \ldots, a_n \in F \) and \(q \in F[x] \) such that

(i) \(n \leq \deg g \).

(ii) \(g = q \cdot (x - a_1) \cdot (x - a_2) \cdot \ldots \cdot (x - a_n) \)

(iii) \(q \) has no roots in \(F \).

(iv) \(\{a_1, a_2, \ldots, a_n\} \) is the set of roots of \(g \).

Put \(m = n + 1 \) and \(a_m = a \). Then \(m = n + 1 \leq \deg g + 1 = (k - 1) + 1 = k = \deg f \) and so (a) holds. From \(f = g \cdot (x - a) = g \cdot (x - a_m) \) and (ii) we conclude that (b) holds. By (iii), (c) holds.

Let \(b \in F \). Since \(f = g \cdot (x - a_m) \), 3.4.12 shows that \(b \) is a root of \(f \) if and only if \(b \) is a root of \(g \) or \(g \) is a root of \(x - a_m \). Using (iv) we conclude that \(b \) root of \(f \) if and only if \(b \in \{a_1, a_2, \ldots, a_n\} \) or \(b - a_m = 0_F \) and so if and only if \(b \in \{a_1, a_2, \ldots, a_n, a_m\} = \{a_1, \ldots, a_m\} \). Thus also (d) holds. \(\square \)

Remark 3.4.15. \(x^2 - 1 \) has four roots in \(\mathbb{Z}_8 \), namely \(\pm 1 \) and \(\pm 3 \), see Example 3.4.13(3). So in rings without (Ax 11) a polynomial can have more roots than its degree.

Lemma 3.4.16. Let \(F \) be a field and \(f \in F[x] \),

(a) If \(\deg f = 1 \), then \(f \) has a root in \(F \).

(b) If \(\deg f \geq 2 \) and \(f \) is irreducible, then \(f \) has no root in \(F \).

(c) If \(\deg f = 2 \) or 3, then \(f \) is irreducible if and only if \(f \) has no roots in \(F \).

Proof. See Exercise #1 \(\square \)
Exercises 3.4:

#1. Let F be a field and $f \in F[x]$. Show that

(a) If $\deg f = 1$, then f has a root in F.

(b) If $\deg f \geq 2$ and f is irreducible, then f has no root in F.

(c) If $\deg f = 2$ or 3, then f is irreducible if and only if f has no roots in F.

#2. Let F be an infinite field. Then the map $F[x] \rightarrow \text{Fun}(F), f \rightarrow f^*$ is 1-1 homomorphism. In particular, if f and g in $F[x]$ induce the same function from F to F, then $f = g$.

#3. Show that $x - 1_F$ divides $a_n x^n + \ldots + a_1 x + a_0$ in $F[x]$ if and only if $a_0 + a_1 + \ldots + a_n = 0$.

#4. (a) Show that $x^7 - x$ induces the zero function on \mathbb{Z}_7.

(b) Use (a) and Theorem 3.4.14 to write $x^7 - x$ is a product of irreducible monic polynomials in \mathbb{Z}_7.

#5. Let R be an integral domain and $n \in \mathbb{N}$ Let $f, g \in R[x]$. Put $n = \deg f$. If $f = 0_R$ define $f^* = 0_R$ and $m_f = 0$. If $f \neq 0_R$ define

$$f^* = \sum_{i=0}^{n} f_{n-i} x^i$$

and let $m_f \in \mathbb{N}$ be minimal with $f_{m_f} \neq 0_R$. Prove that

(a) $\deg f = m_f + \deg f^*$.

(b) $f = x^{m_f} \cdot (f^*)^*$

(c) $(fg)^* = f^* g^*$.

(d) Let $k, l \in \mathbb{N}$ and suppose that $f_0 \neq 0_R$. Then f is the product of polynomials of degree k and l in $R[x]$ if and only if f^* is the product of polynomials of degree k and l in $R[x]$.

(e) Suppose in addition that R is a field and let $a \in R$. Show that a is a root of f^* if and only if $a \neq 0_R$ and a is a root of f.

#6. Let p be a prime. Let $f, g \in \mathbb{Z}_p[x]$ and let $f^*, g^* : \mathbb{Z}_p \rightarrow \mathbb{Z}_p$ be the corresponding polynomial functions. Show that:

(a) If $\deg f < p$ and f^* is the zero function, then $f = 0_F$.

(b) If $\deg f < p$, $\deg g < p$ and $f \neq g$, then $f^* \neq g^*$.

(c) There are exactly p^p polynomials of degree less than p in $\mathbb{Z}_p[x]$.

(d) There exist at least p^p polynomial functions from \mathbb{Z}_p to \mathbb{Z}_p.

(e) There are exactly p^p functions from \mathbb{Z}_p to \mathbb{Z}_p.

(f) All functions from \mathbb{Z}_p to \mathbb{Z}_p are polynomial functions.
3.5 Irreducibility in \(\mathbb{Q}[x] \)

Theorem 3.5.1 (Rational Root Test). Let \(f = \sum_{i=0}^{n} f_i x^i \in \mathbb{Z}[x] \) with \(f_n \neq 0 \). Let \(\alpha \in \mathbb{Q} \) be a root of \(f \) and suppose \(\alpha = \frac{r}{s} \) where \(r, s \in \mathbb{Z} \) with \(s \neq 0 \) and \(\gcd(r, s) = 1 \). Then \(r|f_0 \) and \(s|f_n \) in \(\mathbb{Z} \).

Proof. Since \(\alpha \) is a root of \(f \), \(f^*(\frac{r}{s}) = f^*(\alpha) = 0 \). So
\[
\sum_{i=0}^{n} f_i \left(\frac{r}{s} \right)^i = 0.
\]
Multiplication with \(s^n \) gives
\[
(*) \quad \sum_{i=0}^{n} f_i r^i s^{n-i} = 0.
\]
If \(i \geq 1 \), then \(r|rr^{i-1} = r^i \) and so \(r^i \equiv 0 \pmod{r} \). Thus (*) implies
\[
f_0 s^n \equiv 0 \pmod{r},
\]
and so \(r|f_0 s^n \). Since \(\gcd(r, s) = 1 \), Exercise \#6 gives \(\gcd(r, s^n) = 1 \). \[2.8.8\] now implies that \(r|f_0 \).

Similarly, if \(i < n \), then \(s|ss^{n-i-1} = s^{n-i} \) and so \(s^{n-i} \equiv 0 \pmod{s} \). Thus (*) implies
\[
f_n r^n \equiv 0 \pmod{s},
\]
and so \(s|a_n r^n \). Since \(\gcd(r, s) = 1 \), gives \(\gcd(s, r^n) = 1 \) and then \(s|f_n \).

Definition 3.5.2. Let \(p \) be a fixed prime and \(f \in \mathbb{Z}[x] \). Put
\[
\overline{f} = \sum_{i=0}^{\deg f} [f_i]_p x^i \in \mathbb{Z}_p[x].
\]

Then \(\overline{f} \) is called the reduction of \(f \) modulo \(p \).

Lemma 3.5.3. Let \(p \) be a fixed prime and \(f, g \in \mathbb{Z}[x] \).

(a) The function
\[
\delta_p : \mathbb{Z}[x] \to \mathbb{Z}_p[x], \ f \to \overline{f}
\]
is a homomorphism of rings.

(b) \(\overline{f+g} = \overline{f} + \overline{g} \) and \(\overline{fg} = \overline{f} \overline{g} \).

(c) \(\deg \overline{f} \leq \deg f \).

(d) If \(f \neq 0 \), then \(\deg f = \deg \overline{f} \) if and only if \(p \nmid \text{lead}(f) \).
3.5. IRREDUCIBILITY IN $\mathbb{Q}[X]$

Proof. (a) Consider the map $\alpha : \mathbb{Z} \rightarrow \mathbb{Z}_p[x], n \rightarrow [n]_p$. By Example 3.4.2

$$\alpha_x(f) = \sum_{i=0}^{\deg f} [f_i]_px^i = \overline{f} = \delta_p(f).$$

Thus $\delta_p = \alpha_x$ and since α_x is a homomorphism, (a) holds.

(b) This follows from (a).

(c) Follows immediately from the definition of δ_p.

Let $n = \deg f$. Then $f = \sum_{i=0}^{n} [f_i]_px^i$ and so $\deg f = n$ if and only if $[f_n]_p \neq [0]_p$ and if and only if $p \nmid f_n$. Since lead $f = f_n$ this gives (c). \qed

Lemma 3.5.4. Let $f, g \in \mathbb{Z}[x]$ and let p a prime. If p divides all coefficients of fg, then p divides all coefficients of f or p divides all coefficients of g.

Proof. Let $h = \sum_{i=1}^{n} h_i x^i \in \mathbb{Z}[x]$. Then p divides all the coefficients of h if and only if $[h_i]_p = [0]_p$ for all $0 \leq i \leq n$ and so if and only if $\overline{h} = [0]_p$.

Since p divides all coefficients of fg, $\overline{fg} = [0]_p$ and so by 3.5.3 $\overline{f} \overline{g} = [0]_p$. By 2.7.9(g) \mathbb{Z}_p is field so $\mathbb{Z}_p[x]$ is integral domain by 3.1.10. Thus $\overline{f} = [0]_p$ or $\overline{g} = [0]_p$. Hence either p divides all coefficients of f or p divides all coefficients of g. \qed

Definition 3.5.5. Let $f \in \mathbb{Z}[x]$ and put $n = \deg f$.

(a) If $f \neq 0$, define $ct(f) = \gcd(f_0, f_1, \ldots, f_n)$. If $f = 0$ define $ct(f) = 0$. $ct(f)$ is called the content of f.

(b) f is called primitive if $ct(f) = 1$.

Example 3.5.6. Let $f = 12 + 8x + 20x^2$. Compute $ct(f)$ and $ct(f)^{-1}f$.

$$ct(f) = \gcd(12, 8, 20) = 4$$

and

$$ct(f)^{-1}f = \frac{1}{4}(12 + 8x + 20x^2) = 3 + 2x + 5x^2$$

Note that the latter polynomial is primitive.

Lemma 3.5.7. Let $f \in \mathbb{Z}[x]$.

(a) Let $a \in \mathbb{Z}$. Then $ct(af) = |a|ct(f)$.

(b) Suppose $f \neq 0$ and put $g = ct(f)^{-1}f \in \mathbb{Q}[x]$. Then $g \in \mathbb{Z}[x]$, $f = ct(f)g$, $\deg f = \deg g$ and g is primitive.
Proof. \(\text{(a)}\) If \(a = 0\) or \(f = 0\), then \(\text{ct}(af) = \text{ct}(0) = 0 = |a|\text{ct}(f)\). So suppose that \(a \neq 0\) and \(f \neq 0\). Put \(n = \deg f\). By Exercise 1.2.4 \(\gcd(af_0, af_1) = |a|\gcd(f_0, f_1)\). An easy induction argument shows

\[
\gcd(af_0, af_1, \ldots af_n) = |a|\gcd(f_0, f_1, \ldots, f_n).
\]

Thus \(\text{ct}(af) = |a|\text{ct}(f)\).

\(\text{(b)}\) Since \(\text{ct}(f)|f_i, \text{ct}(f)^{-1}f_i \in \mathbb{Z}\) for all \(0 \leq i \leq \deg f\). Thus \(g \in \mathbb{Z}[x]\). Note that \(\text{ct}(f)g = f\) and so by \(\text{(a)}\) and since \(\text{ct}(f) \geq 0\).

\[
\text{ct}(f) = |\text{ct}(f)|\text{ct}(g) = \text{ct}(f)\text{ct}(g).
\]

Since \(f \neq 0\), \(ctf \neq 0\) and thus \(ctg = 1\). Hence \(g\) is primitive.

\[\square\]

Lemma 3.5.8. Let \(f, g \in \mathbb{Z}[x]\).

\(\text{(a)}\) If \(f\) and \(g\) are primitive, then also \(fg\) is primitive.

\(\text{(b)}\) \(\text{ct}(fg) = \text{ct}(f)\text{ct}(g)\).

Proof. \(\text{(a)}\) Since \(\text{ct}(f) = 1 = \text{ct}(g)\) we have \(f \neq 0\) and \(g \neq 0\). By 3.1.10 \(\mathbb{Z}[x]\) is an integral domain and so \(fg \neq 0\). Suppose for a contradiction that \(\text{ct}(fg) \neq 1\). Then \(??\) \(\text{ct}(fg)\) is a product of primes and so there exists a prime \(p\) with \(p|\text{ct}(fg)\). Hence \(p\) divides all coefficient of \(fg\) and so by 3.5.4 \(p\) divides all coefficients of \(f\) or \(p\) divides all coefficients of \(g\). Hence \(\text{ct}(f) \geq p\) or \(\text{ct}(g) \geq p\), a contradiction.

\(\text{(b)}\) Suppose first that \(f = 0\) or \(g = 0\). Then \(fg = 0\). Also \(\text{ct}(f) = 0\) or \(\text{ct}(g) = 0\) and so \(\text{ct}(fg) = 0 = \text{ct}(f)\text{ct}(g)\).

Suppose that \(f \neq 0\) and \(g \neq 0\). Put \(d = \text{ct}(f), e = \text{ct}(g), \tilde{f} = \frac{1}{d}f\) and \(\tilde{g} = \frac{1}{e}g\). Then \(f = df, g = eg\) and by 3.5.7\(\text{(b)}\), \(\tilde{f}\) and \(\tilde{g}\) are primitive polynomials in \(\mathbb{Z}[x]\). By \(\text{(a)}\) \(\tilde{f}\tilde{g}\) is primitive. It follows that \(\text{ct}(\tilde{f}\tilde{g}) = 1\) and so using 3.5.7\(\text{(a)}\),

\[
\text{ct}(fg) = \text{ct}(de\tilde{f}\tilde{g}) = de \cdot \text{ct}(\tilde{f}\tilde{g}) = de = \text{ct}(f)\text{ct}(g).
\]

\[\square\]

Theorem 3.5.9. Let \(f \in \mathbb{Z}[x]\) and \(n, m \in \mathbb{N}\). Then \(f\) is the product of polynomials of degree \(n\) and \(m\) in \(\mathbb{Q}[x]\) if and only if \(f\) is the product of polynomials of degree \(n\) and \(m\) in \(\mathbb{Z}[x]\).

Proof. The backwards direction is obvious. So suppose \(f = gh\) where \(g, h \in \mathbb{Q}[x]\) with \(\deg g = n\) and \(\deg h = m\). Note that there exists a positive integer \(a\) such that \(ag \in \mathbb{Z}[x]\) (for example choose \(a\) to be the product the denominators of the non-zero coefficients of \(f\)). Similarly choose \(b \in \mathbb{Z}^+\) with \(bh \in \mathbb{Z}[x]\). Put \(\tilde{g} = ag\) and \(\tilde{h} = bh\). Then

\[
(1) \quad abf = abgh = (ag)(bh) = \tilde{g}\tilde{h},
\]

and so

\[
ab \cdot \text{ct}(f) \quad \text{ct}(abf) \overset{\text{(1)}}{=} \text{ct}(\tilde{g}\tilde{h}) \quad \text{ct}(\tilde{g})\text{ct}(\tilde{h}).
\]
It follows that \(ab|ct(\tilde{g})ct(\tilde{h}) \) in \(\mathbb{Z} \) and hence (see Exercise 4 on Homework 9)
\[
(2) \quad ab = \hat{a}\hat{b},
\]
where \(\hat{a} \) and \(\hat{b} \) are integers with \(\hat{a}|ct(\tilde{g}) \) and \(\hat{b}|ct(\tilde{h}) \) in \(\mathbb{Z} \). Put
\[
(3) \quad \hat{g} = \hat{a}^{-1}\tilde{g} \quad \text{and} \quad \hat{h} = \hat{b}^{-1}\tilde{h}.
\]
By 3.5.7(b), \(ct(\tilde{g})^{-1}\tilde{g} \in \mathbb{Z}[x] \). Since \(\hat{a}|ct(\tilde{g}) \) in \(\mathbb{Z} \), \(\hat{a}^{-1}(ct(\tilde{g}))^{-1} \tilde{g} = \left(\hat{a}^{-1}ct(\tilde{g})\right) \left(\tilde{g}
ight) \in \mathbb{Z}[x] \).

Similarly \(\hat{h} \in \mathbb{Z}[x] \). Observe also that
\[
\deg \hat{g} = \deg \tilde{g} = \deg g = n \quad \text{and} \quad \deg \hat{h} = \deg \tilde{h} = \deg h = m.
\]
We compute
\[
abf = (1) \quad \tilde{g}\tilde{h} = (\hat{a}\hat{b})\hat{g}\hat{h} = (2) \quad ab\hat{g}\hat{h}.
\]
By 3.1.10 \(\mathbb{Z}[x] \) is an integral domain. Since \(ab \neq 0 \), the Cancellation Law 2.7.7 implies \(f = \hat{g}\hat{h} \) and so \(f \) is the product of polynomials of degree \(n \) and \(m \) in \(\mathbb{Z}[x] \). \(\square \)

Corollary 3.5.10. Let \(f \) be a non-constant polynomial in \(\mathbb{Z}[x] \) and suppose that \(f \) is not irreducible in \(\mathbb{Q}[x] \).

(a) There exist non-constant polynomials \(f \) and \(g \) in \(\mathbb{Z}[x] \) of smaller degree than \(f \) with \(f = gh \).

(b) Suppose in addition that \(p \) is a prime with \(p \nmid \text{lead}(f) \). Then \(\deg \tilde{f} = \deg f \) and \(\tilde{g} \) and \(\tilde{h} \) are non-constant polynomials of smaller degree than \(f \) with \(\tilde{f} = \tilde{g}\tilde{h} \).

Proof. (a) Since \(f \) is not constant and not irreducible in \(\mathbb{Q}[x] \) we conclude from 3.3.2 that \(f = gh \) where \(g \) and \(h \) are non-constant polynomials in \(\mathbb{Q}[x] \) of smaller degree as \(f \). By 3.5.9 we can choose such \(g, h \in \mathbb{Z}[x] \).

(b) Since \(p \nmid \text{lead}(f) \) and \(\text{lead} f = \text{lead}(gh) = \text{lead}(g)\text{lead}(h) \) we get \(p \nmid \text{lead}(g) \) and \(p \nmid \text{lead}(h) \). Thus by 3.5.3(c), \(\deg \tilde{f} = \deg f \), \(\deg \tilde{g} = \deg g \) and \(\deg \tilde{h} = \deg h \). So \(\tilde{g} \) and \(\tilde{h} \) are non-constant polynomials of smaller degree than \(\tilde{f} \). By 3.5.3 \(\tilde{f} = \tilde{g}\tilde{h} = \tilde{g}\tilde{h} \). So (b) holds. \(\square \)

Theorem 3.5.11 (Eisenstein Criterion). Let \(f = \sum_{i=0}^{n} f_i x^i \in \mathbb{Z}[x] \) be a non-constant polynomial. Suppose there exists a prime \(p \) such that

(i) \(p|f_i \) for each \(0 \leq i < n \);
(ii) \(p \nmid f_n \); and
(iii) \(p^2 \nmid f_0 \).
Then \(f \) is irreducible in \(\mathbb{Q}[x] \).

Proof. Suppose for a contradiction that \(f \) is not irreducible. Then by 3.5.10 \(f = gh \) and \(\overline{f} = \overline{g}\overline{h} \) where \(g, h \in \mathbb{Z}[x] \) and none of \(\overline{f}, \overline{g}, \overline{h} \) are constant. Since \(p | f_i \) for all \(0 \leq i < n \), we have \([f_i]_p = [0]_p \) for \(0 \leq i < n \) and so \(\overline{f} = [f_n]_p x^n \). Since \(\overline{f} = \overline{g}\overline{h} \) we have \(g | f \) in \(\mathbb{Z}_p[x] \) and so by Exercise 3 on Homework 9, \(g = ax^i \) for some \(i \in \mathbb{N} \) and \(a \in \mathbb{Z}_p \). Since \(g \) is not constant, \(i \geq 1 \) and so \([g_0]_p = [0]_p \). Thus \(p | g_0 \) and similarly \(p | h_0 \). Since \(f_0 = h_0 g_0 \), this implies \(p^2 | f_0 \), a contradiction to (ii).

Example 3.5.12. Show that \(f = x^4 + 121x^3 + 55x^2 + 66x + 11 \) is irreducible in \(\mathbb{Q}[x] \).

We choose \(p = 11 \). 11 divides 121, 55, 66 and 11. 11 does not divide 1 and 11^2 does not divide 11. So \(f \) is irreducible by Eisenstein’s Criterion.

Theorem 3.5.13. Let \(f \in \mathbb{Z}[x] \) and \(p \) a prime integer with \(p \nmid \text{lead}(f) \). If the reduction \(\overline{f} \) of \(f \) modulo \(p \) is irreducible in \(\mathbb{Z}_p[x] \), then \(f \) is irreducible in \(\mathbb{Q}[x] \).

Proof. Suppose \(f \) is not irreducible in \(\mathbb{Q}[x] \). Then 3.5.10(b) shows that \(\overline{f} \) is the product of two non-constant polynomials. So by 3.3.2 \(\overline{f} \) is not irreducible in \(\mathbb{Z}_p[x] \), a contradiction.

Example 3.5.14. Show that \(7x^3 + 11x^2 + 4x + 19 \) is irreducible in \(\mathbb{Q}[x] \).

We choose \(p = 2 \). Then \(\overline{f} = x^3 + x^2 + 1 \) in \(\mathbb{Z}_2[x] \). By Exercise 6(b) on Homework 8, \(\overline{f} \) is irreducible and so \(f \) is irreducible in \(\mathbb{Q}[x] \) by 3.5.13.

Exercises 3.5:

#1. Use Eisenstein’s Criterion to show that each polynomial is irreducible in \(\mathbb{Q}[x] \).

(a) \(x^5 - 4x + 22 \)

(b) \(10 - 15x + 25x^2 - 7x^4 \).

(c) \(5x^{11} - 6x^4 + 12x^3 + 36x - 6 \).

#2. Show that each polynomial \(f \) is irreducible in \(\mathbb{Q}[x] \) by finding a prime \(p \) such that the reduction of \(f \) modulo \(p \) is irreducible in \(\mathbb{Z}_p[x] \).

(a) \(7x^3 + 6x^2 + 4x + 6 \).

(b) \(9x^4 + 4x^3 - 3x + 7 \).

#3. If a monic polynomial with integer coefficients factors in \(\mathbb{Z}[x] \) as a product of a polynomials of degree \(m \) and \(n \), prove that it can be factored as a product of monic polynomials of degree \(m \) and \(n \) in \(\mathbb{Z}[x] \).

#4. Let \(f \) be a non-constant polynomial of degree \(n \) in \(\mathbb{Z}[x] \) and let \(p \) be a prime. Suppose that

(i) \(p | f_i \) for all \(1 \leq i \leq n \).

(ii) \(p \nmid f_0 \).

(iii) \(p^2 \nmid f_n \).
Chapter 4

Congruence Classes in F[x]

4.1 The Congruence Relation

Notation 4.1.1. Let \(F \) be a field and \(f, g, p \in F[x] \). Recall from Definition 2.4.5 that the relation \(\equiv \pmod{p} \) is defined by

\[
f \equiv g \pmod{p} \quad \text{if} \quad p|f-g.
\]

By 2.4.7 this relation is an equivalence relation. By 2.4.8 \([f]_p\) is denotes the equivalence class of ‘\(\equiv \pmod{p} \)’ containing \(f \), and \([f]_p\) is called the congruence class of \(f \) modulo \(p \). So

\[
[f]_p = \{ g \in F[x] \mid f \equiv g \pmod{p} \}
\]

\(F[x]_p \) denotes the set of congruence classes modulo \(p \) in \(F[x] \). We will also use the notation \(F[x]/(p) \) for \(F[x]_p \). So

\[
F[x]/(p) = F[x]_p = \{ [f]_p \mid f \in F[x] \}
\]

Example 4.1.2. Let \(f = x^3 + x^2 + 1, g = x^2 + x \) and \(p = x^2 + x + 1 \) in \(\mathbb{Z}_2[x] \). Is \(f \equiv g \pmod{p} \)?

\(f \) and \(g \) are congruent modulo \(p \) if and only if \(p \) divides \(f-g \) and so by 3.2.1 if and only if the remainder of \(f-g \) when divided by \(p \) is 0. So we can use the division algorithm to check whether \(f \) and \(g \) are congruent modulo \(p \).

We have \(f-g = x^3 + x + 1 \) and
So the remainder of \(f - g \) when divided by \(p \) is not zero and therefore

\[
x^3 + x^2 + 1 \not\equiv x^2 + x \pmod{x^2 + x + 1}
\]
in \(\mathbb{Z}_2[x] \).

Theorem 4.1.3. Let \(F \) be a field and \(f, g, p \in F[x] \) with \(p \neq 0_F \). Then the following statements are equivalent:

(a) \(f = g + pk \) for some \(k \in F[x] \).

(b) \(f - g = pk \) for some \(k \in F[x] \).

(c) \(p|f - g \).

(d) \(f \equiv g \pmod{p} \).

(e) \(g \in [f]_p \).

(f) \([f]_p \cap [g]_p \neq \emptyset \).

(g) \([f]_p = [g]_p \).

(h) \(f \in [g]_p \).

(i) \(g \equiv f \pmod{p} \).

(j) \(p|g - f \).

(k) \(g - f = pl \) for some \(l \in F[x] \).

(l) \(g = f + pl \) for some \(l \in F[x] \).

(m) \(f \) and \(g \) have the same remainder when divided by \(p \).

Proof. By 2.4.9 the statements (a) - (l) are equivalent.

Let \(r_1 \) and \(r_2 \) be the remainders of \(f \) and \(g \), respectively, when divided by \(p \). Then there exist \(q_1, q_2 \in F[x] \) with

\[
f = pq_1 + r_1 \quad \text{and} \quad \deg r_1 < \deg p
\]
\[
g = pq_2 + r_2 \quad \text{and} \quad \deg r_2 < \deg p
\]

\([m] \implies [l] \): Suppose (m) holds. Then \(r_1 = r_2 \) and

\[
g - f = (pq_2 + r_2) - (pq_1 + r_1) = p \cdot (q_2 - q_1) + (r_2 - r_1) = p \cdot (q_2 - q_1).
\]

So (l) holds with \(k = q_2 - q_1 \).
(a) \implies (m): Suppose $f = g + pk$ for some $k \in F[x]$. Then $f = (pq_2 + r_2) + pk = p(q_2 + k) + r_2$. Note that $q_2 + k \in F[x]$, $r_2 \in F[x]$ and $\deg r_2 < \deg p$. So r_2 is the remainder of f when divided by p and (m) holds.

Theorem 4.1.4. Let F be a field and $f, p \in F$ with $p \neq 0_F$. Then there exists a unique $r \in F[x]$ with $\deg r < \deg p$ and $[f]_p = [r]_p$, namely r is the remainder of f when divided by p.

Proof. Let s be the remainder of f when divided by p and let $r \in F[x]$ with $\deg r < \deg p$. Since $r = p0_F + r$ and $\deg r < \deg p$, r is the remainder of r when divided by p. By 4.1.3, $[f]_p = [r]_p$ if and only if f and s have the same remainder when divided by n, and so if and only if $s = r$.

Lemma 4.1.5. Let F be a field and $p \in F[x]$ with $p \neq 0_F$. Then

$$F[x]/(p) = \{ [r]_p \mid r \in F[x], \deg r < \deg p \}.$$

Proof. By definition

$$F[x]/(p) = \{ [f]_p \mid f \in F[x] \}.$$

By 4.1.4 for each $f \in F[x]$, there exists $r \in F[x]$ with $[f]_p = [r]_p$ and $\deg r < \deg p$. Thus

$$\{ [f]_p \mid f \in F[x] \} \subseteq \{ [r]_p \mid r \in F[x], \deg r < \deg p \}$$

The reversed inclusion is obvious.

Example 4.1.6. Determine

(a) $\mathbb{Z}_3[x]/(x^2 + 1)$, and

(b) $\mathbb{Q}[x]/(x^3 - x + 1)$.

(a) Put $p = x^2 + 1$ in $\mathbb{Z}_3[x]$. Then $\deg p = 2$. Since $\mathbb{Z}_3 = \{0, 1, 2\}$, the polynomials of degree less than 2 in $\mathbb{Z}_3[x]$ are

$$0, 1, 2, x, x+1, x+2, 2x, 2x+1, 2x+2.$$

Thus 4.1.5 shows that

$$\mathbb{Z}_3[x]/(x^2 + 1) = \{ [f]_p \mid p \in \mathbb{Z}_2[x], \deg f < 2 \}$$

$$= \{ [0]_p, [1]_p, [2]_p, [x]_p, [x+1]_p, [x+2]_p, [2x]_p, [2x+1]_p, [2x+2]_p \}.$$

(b) Any polynomial of degree less than 3 can be written as $a + bx + cx^2$, where $a, b, c \in \mathbb{Q}$. Thus

$$\mathbb{Q}[x]/(x^3 - x + 1) = \{ [a + bx + cx^2]_{x^3-x+1} \mid a, b, c \in \mathbb{Q} \}.$$

Exercises 4.1:
#1. Let $f, g, p \in \mathbb{Q}[x]$. Determine whether $f \equiv g \pmod{p}$.

 (a) $f = x^5 - 2x^4 + 4x^3 - 3x + 1$, $g = 3x^4 + 2x^3 - 5x^2 + 2$, $p = x^2 + 1$;

 (b) $f = x^4 + 2x^3 - 3x^2 + x - 5$, $g = x^4 + x^3 - 5x^2 + 12x - 25$, $p = x^2 + 1$;

 (c) $f = 3x^5 + 4x^4 + 5x^3 - 6x^2 + 5x - 7$, $g = 2x^5 + 6x^4 + x^3 + 2x^2 + 2x - 5$, $p = x^3 - x^2 + x - 1$.

#2. Show that, under congruence modulo $x^3 + 2x + 1$ in $\mathbb{Z}_3[x]$ there are exactly 27 congruence classes.

#3. Prove or disprove: Let F be a field and $f, g, k, p \in F[x]$. If p is nonzero, p is relatively prime to k and $fk \equiv gk \pmod{p}$, then $f \equiv g \pmod{p}$.

#4. Prove or disprove: Let F be a field and $f, g, p \in F[x]$. If p is irreducible and $fg \equiv 0 \pmod{p}$, then $f \equiv 0 \pmod{p}$ or $g \equiv 0 \pmod{p}$.

4.2 Congruence Class Arithmetic

Remark 4.2.1. Let F be a field and $p \in F[x]$. Recall from 2.5.2 that we defined an addition and multiplication on $F[x]/(p)$ by

$$[f]_p + [g]_p = [f + g]_p \quad \text{and} \quad [f]_p \cdot [g]_p = [f \cdot g]_p$$

for all $f, g \in F[x]$.

Example 4.2.2. Compute the addition and multiplication table for $\mathbb{Z}_2[x]/(x^2 + x)$.

We write $[f]$ for $[f]_{x^2 + x}$. Since $\mathbb{Z}_2 = \{0, 1\}$, the polynomial of degree less than 2 in $\mathbb{Z}_2[x]$ are $0, 1, x, x + 1$. Thus 4.1.5 gives

$$\mathbb{Z}_2[x]/(x^2 + x) = \{ [0], [1], [x], [x + 1] \}.$$

We compute

$$
\begin{array}{c|cccc}
\hline
\end{array}
\quad
\begin{array}{c|cccc}
\cdot & [0] & [1] & [x] & [x + 1] \\
\hline
[0] & [0] & [0] & [0] & [0] \\
[x] & [0] & [x] & [x] & [0] \\
[x + 1] & [0] & [x + 1] & [0] & [x + 1] \\
\end{array}
$$

Note here that

$$[x][x + 1] = [x(x + 1)] = [x^2 + x] = [0]$$
and

\[(x + 1)(x + 1) = [(x + 1)(x + 1)] = [x^2 + 1] = [(x^2 + 1) + (x^2 + x)] = [x + 1]\]

Observe from the above tables that \(\mathbb{Z}_2[x]/(x^2 + x)\) contains the subring \([0, 1]\) isomorphic to \(\mathbb{Z}_2\). The next theorem shows that a similar statement holds in general.

Theorem 4.2.3. Let \(F\) be a field and \(p \in F[x]\).

(a) \(F[x]/(p)\) is a commutative ring with identity \([1_F]_p\).

(b) The function

\[\sigma : \ F[x] \to F[x]/(p), \ f \mapsto [f]_p.\]

is an onto homomorphism of rings.

(c) Put \(\hat{F} = \{[a]_p | a \in F\}\). Then \(\hat{F}\) is a subring of \(F[x]/(p)\).

(d) Suppose \(p \not\in F\). Then the function

\[\tau : \ F \to \hat{F}, \ a \mapsto [a]_p.\]

is an isomorphism of rings. In particular, \(\hat{F}\) is a subring of \(F[x]/(p)\) isomorphic to \(F\).

Proof.

(a) This is a special case of 2.5.4.

(b) Let \(f, g \in F[x]\). Then

\[\sigma(f + g) = [f + g]_p = [f]_p + [g]_p = \sigma(f) + \sigma(g)\]

and

\[\sigma(fg) = [fg]_p = [f]_p[g]_p = \sigma(f)\sigma(g)\]

So \(\sigma\) is a homomorphism. If \(a \in F[x]/(p)\), then \(a = [f]_p\) for some \(a \in F\). So \(\sigma(f) = a\) and \(\sigma\) is onto.

(c) \(\hat{F} = \{[a]_p | a \in F\} = \{\sigma(a) | a \in F\}\). Since \(F\) is a subring of \(F[x]\) and \(\sigma\) is a homomorphism we conclude from Exercise 6 on the Review for Exam 2 that \(\hat{F}\) is a subring of \(F[x]/(p)\).

(d) We need to show that \(\tau\) is a 1-1 and onto homomorphism. By (b), \(\sigma\) is a homomorphism. Observe that \(\tau(a) = \sigma(a)\) for all \(a \in F\). Hence also \(\tau\) is a homomorphism.

Let \(d \in \hat{F}\). Then \(d = [a]_p\) for some \(a \in F\) and so \(d = \tau(a)\). Thus \(\tau\) is onto.

Let \(a, b \in F\) with \(\tau(a) = \tau(b)\). Then \([a]_p = [b]_p\). Since \(p \not\in F\), \(\deg p \geq 1\) and since \(a, b \in F\), \(\deg a \leq 0\) and \(\deg b \leq 0\). Thus \(\deg a < \deg p\) and \(\deg b < \deg p\). Since \([a]_p = [b]_p\) we conclude from 4.1.4 that \(a = b\). So \(\tau\) is 1-1 and (d) holds.

The preceding theorem shows that \(F[x]/(p)\) contains a subring isomorphic to \(F\). This suggest that there exists a ring isomorphic to \(F[x]/(p)\) contains \(F\) has a subring. The next theorem shows that this is indeed true.
Theorem 4.2.4. Let F be a field and $p \in F[x]$ with $p \notin F$. Then there exist a ring R and $\alpha \in R$ such that

(a) F is a subring of R,

(b) there exists an isomorphism $\Phi : R \to F[x]/(p)$ with $\Phi(\alpha) = [x]_p$ and $\Phi(a) = [a]_p$ for all $a \in F$.

(c) R is a commutative ring with identity $1_R = 1_F$.

Proof. Let $S = F[x]/(p) \backslash \hat{F}$ and $R = S \cup F$. (So for $a \in F$ we removed $[a]_p$ from $F[x]/(p)$ and replaced it by a.) Define $\Phi : R \to F[x]/(p)$ by

$$\Phi(r) = [r]_p \text{ if } r \in F \text{ and } \Phi(r) = r \text{ if } r \in S$$

Then it is easy to check that Φ is a bijection. Next we define an addition \oplus and a multiplication \odot on R by

$$r \oplus s = \Phi^{-1}(\Phi(r) + \Phi(s)) \quad \text{and} \quad r \odot s := \Phi^{-1}(\Phi(r)\Phi(s))$$

Observe that $\Phi(\Phi^{-1}(u)) = u$ for all $u \in F[x]/(p)$. So applying Φ to both sides of (1) gives

$$\Phi(r \oplus s) = \Phi(r) + \Phi(s) \quad \text{and} \quad \Phi(r \odot s) = \Phi(r)\Phi(s)$$

for all $r, s \in R$. \[E.0.3\] implies that R is ring and Φ is an isomorphism. Put $\alpha = [x]_p$. Then $\alpha \in S$ and so $\alpha \in R$. Moreover $\Phi(\alpha) = \Phi([x]_p) = [x]_p$. Let $a \in F$. Then $a \in R$ and $\Phi(a) = [a]_p$. Thus \[b\] holds.

For $a, b \in F$ we have

$$a \oplus b = \Phi^{-1}(\Phi(a) + \Phi(b)) = \Phi^{-1}([a]_p + [b]_p) = \Phi^{-1}([a + b]_p) = a + b \in F$$

and

$$a \odot b = \Phi^{-1}(\Phi(a)\Phi(b)) = \Phi^{-1}([a]_p[b]_p) = \Phi^{-1}([ab]_p) = ab \in F$$

So F is a subring of R. Thus also \[a\] is proved.

By \[4.2.3\] $F[x]/(p)$ is a commutative ring with identity $[1_F]_p$. Since Φ is an isomorphism we conclude that R is a commutative ring with identity 1_F. So \[c\] holds. \[\Box\]

Remark 4.2.5. Let R and S be commutative rings with identities. Suppose that S is a subring of R and $1_S = 1_R$. Then we identify the polynomial

$$f = \sum_{i=0}^{n} f_i x^i \quad \text{in } S[x]$$

with the polynomial

$$g = \sum_{i=0}^{n} f_i x^i \quad \text{in } R[x]$$
Note that with this identification, $S[x]$ becomes a subring of $R[x]$. But also note that the functions

$$f^* : S \rightarrow S, \ a \mapsto \sum_{i=0}^{n} f_i a^i$$

and

$$g^* : R \rightarrow R, \ a \mapsto \sum_{i=0}^{n} f_i a^i$$

are not the same unless $S \neq R$, since they have different domains. Nevertheless, we use the notation

$$f^*(a) := \sum_{i=0}^{n} f_i a^i.$$

even for $a \in R$.

For example consider

$$f = x^2 + 1 \in \mathbb{Q}[x] \quad \text{and} \quad g = x^2 + 1 \in \mathbb{R}[x].$$

Then $f = g$. But the functions

$$f^* : \mathbb{Q} \rightarrow \mathbb{Q}, \ a \mapsto a^2 + 1 \quad \text{and} \quad g^* : \mathbb{R} \rightarrow \mathbb{R}, \ a \mapsto a^2 + 1$$

are not the same. But abusing notations we write

$$f^*(\sqrt{2}) = (\sqrt{2})^2 + 1 = 3.$$

Notation 4.2.6. Let F be a field and $p \in F[x]$ with $p \notin F$. Let R and α be as in 4.2.4. We denote the ring R by $F_p[\alpha]$. (If $F = \mathbb{Z}_q$ for some prime integer q, we will use the notation $\mathbb{Z}_{q,p}[\alpha]$)

Theorem 4.2.7. Let F be a field and $p \in F[x]$ with $p \notin F$ and let α and Φ be as in 4.2.4.

(a) For all $f \in F[x]$, $\Phi(f^*(\alpha)) = [f]_p$.

(b) Let $f, g \in F[x]$. Then $f^*(\alpha) = g^*(\alpha)$ if and only if $[f]_p = [g]_p$.

(c) For each $\beta \in F_p[\alpha]$ there exists a unique $f \in F[x]$ with $\deg f < \deg p$ and $f^*(\alpha) = \beta$.

(d) Let $n = \deg p$. Then for each $\beta \in F_p[\alpha]$ there exist unique $b_0, b_1, \ldots, b_{n-1} \in F$ with

$$\beta = b_0 + b_1 \alpha + \ldots + b_{n-1} \alpha^{n-1}.$$

(e) Let $f \in F[x]$, then $f^*(\alpha) = 0_F$ if and only if $p \mid f$ in $F[x]$.

(f) α is a root of p in $F_p[\alpha]$.

Proof. (a)
\[\Phi(f^*(\alpha)) = \Phi \left(\sum_{i=0}^{\deg f} f_i \alpha_i \right) = \sum_{i=0}^{\deg f} \Phi(f_i) \Phi(\alpha_i) = \sum_{i=0}^{\deg f} [f_i]_p [x]_p^i = \left[\sum_{i=0}^{\deg f} f_i x^i \right]_p = [f]_p. \]

(b)
\[f^*(\alpha) = g^*(\alpha) \iff \Phi(f^*(\alpha)) = \Phi(g^*(\alpha)) \text{ -- } \Phi \text{ is 1-1} \]
\[\iff [f]_p = [g]_p \text{ -- } (a) \]

(c) Let \(\beta \in F_p[\alpha] \) and \(f \in F[x] \). Then
\[f^*(\alpha) = \beta \iff \Phi(f^*(\alpha)) = \Phi(\beta) \text{ -- } \Phi \text{ is 1-1} \]
\[\iff [f]_p = \Phi(\beta) \text{ -- } (a) \]

Since \(\Phi(\beta) \in F[x]/(p), 4.1.4 \) shows that there exists a unique \(f \in F[x] \) with \(\deg f < \deg p \) and \([f]_p = \Phi(\beta) \). It follows that \(f \) is also the unique \(f \in F[x] \) with \(\deg f < \deg p \) and \(f^*(\alpha) = \beta \). Thus (c) holds.

(d) Let \(b_0, \ldots, b_{n-1} \in F \) and put \(f = \sum_{i=0}^{n-1} b_i x^i \). Then \(f \) is a polynomial with \(\deg f < \deg p \) and \(b_0, \ldots, b_{n-1} \) are uniquely determined by \(f \). Also
\[f^*(\alpha) = b_0 + b_1 \alpha + \ldots + b_{n-1} \alpha^{n-1} \]
and so (d) follows from (c).

(e)
\[f^*(\alpha) = 0_F \]
\[\iff f^*(\alpha) = 0^*_F (\alpha) \text{ -- definition of } 0^*_F \]
\[\iff [f]_p = [0_F]_p \text{ -- (b)} \]
\[\iff p \mid f - 0_F \text{ -- 4.1.3} \]
\[\iff p \mid f \text{ -- 2.2.8(b)} \]

Since \(p \mid p \) this follows from (e).

Example 4.2.8. Let \(p = x^2 + x \in \mathbb{Z}_2[x] \). Determine the addition and multiplication table of \(\mathbb{Z}_{2,p}[\alpha] \).
4.2. CONGRUENCE CLASS ARITHMETIC

+ 0 1 α α + 1
0 0 1 α α + 1
1 1 0 α + 1 α
α α α + 1 0 1
α + 1 α + 1 α 1 0

· 0 1 α α + 1
0 0 0 0 0
1 0 1 α α + 1
α 0 α α 0
α + 1 0 α + 1 0 α + 1

This can be read off from Example 4.2.2. But it also can be computed from the preceding theorem: By 4.2.7(d) any element of \(F[\alpha] \) can be uniquely written as \(b_0 + b_1\alpha \) with \(b_0, b_1 \in \mathbb{Z}_2 \). By 2.4.15 \(\mathbb{Z}_2 = \{0,1\} \) and so
\[
\mathbb{Z}_{2,p}[\alpha] = \{0 + 0\alpha, 0 + 1\alpha, 1 + 0\alpha, 1 + 1\alpha\} = \{0, 1, \alpha, \alpha + 1\}.
\]
By 4.2.7(p) \(p^*(\alpha) = 0 \). So
\[
\alpha^2 + \alpha = 0 \quad \text{and} \quad \alpha^2 = -\alpha = \alpha.
\]
(Note here that \(\alpha + \alpha = 2\alpha = 0 \) and so \(-\alpha = \alpha \).) This allows us to compute the multiplication table, for example
\[
(\alpha + 1)(\alpha + 1) = \alpha^2 + \alpha + 1 = \alpha^2 + 1 = \alpha + 1.
\]
and
\[
\alpha(\alpha + 1) = \alpha^2 + \alpha = 0
\]

Exercises 4.2:

#1. Write out the addition and multiplication table of \(\mathbb{Z}_2[x]/(x^3 + x + 1) \). Is \(\mathbb{Z}_2[x]/(x^3 + x + 1) \) a field?

#2. Each element of \(\mathbb{Q}[x]/(x^2 - 3) \) is can be uniquely written in the form \([ax + b]\) (Why?). Determine the rules of addition and multiplication of congruence classes. (In other words, if the product of \([ax + b][cx + d]\) is the class \([rx + c]\) describe how to find \(r \) and \(s \) from \(a, b, c, d \), and similarly for addition.)

#3. In each part explain why \(t \in F[x]/(p) \) is a unit and find its inverse.

(a) \(t = [2x - 3] \in \mathbb{Q}[x]/(x^2 - 2) \)
(b) \(t = [x^2 + x + 1] \in \mathbb{Z}_3[x]/(x^2 + 1) \)
(c) \(t = [x^2 + x + 1] \in \mathbb{Z}_2[x]/(x^3 + x + 1) \)
4.3 \(F_p[\alpha] \) when \(p \) is irreducible

In this section we determine when \(F_p[\alpha] \) is a field.

Lemma 4.3.1. Let \(F \) be a field, \(p \in F[x] \) with \(p \notin F \) and \(f \in F[x] \).

(a) \(f^*(\alpha) \) is a unit in \(F_p[\alpha] \) if and only if \(\gcd(f,p) = 1_F \).

(b) If \(1_F = fg + ph \) for some \(g,h \in F[x] \), then \(g^*(\alpha) \) is an inverse of \(f^*(\alpha) \).

Proof. (a) We have

\[
\begin{align*}
\text{\(f^*(\alpha) \) is a unit in \(F_p[\alpha] \)} & \iff \text{\(f^*(\alpha)\beta = 1_F \) for some \(\beta \in F_p[\alpha] \)} & \text{-\(F_p[\alpha] \) is commutative, 2.11.7} \\
& \iff \text{\(f^*(\alpha)g^*(\alpha) = 1_F \) for some \(g \in F[x] \)} & \text{- 4.2.7(c)} \\
& \iff \text{\((fg)^*(\alpha) = 1_F^p(\alpha) \) for some \(g \in F[x] \)} & \text{- 3.4.8} \\
& \iff \text{\([fg]_p = [1_F]_p \) for some \(g \in F[x] \)} & \text{- 4.2.7(b)} \\
& \iff \text{\(1_F = fg + ph \) for some \(g,h \in F[x] \)} & \text{- 1.1.3(a)(i)} \\
& \iff \text{\(\gcd(f,p) = 1_F \)} & \text{- 3.2.13}
\end{align*}
\]

(b) From the above list of equivalent statement, \(1_F = fg + ph \) implies \(f^*(\alpha)g^*(\alpha) = 1_F \). Since \(F_p[\alpha] \) is commutative we also have \(g^*(\alpha)f^*(\alpha) = 1_F \) and so \(g^*(\alpha) \) is an inverse of \(f^*(\alpha) \). \(\varepsilon \)

Proposition 4.3.2. Let \(F \) be a field and \(p \in F[x] \) with \(p \notin F \). Then the following statements are equivalent:

(a) \(p \) is irreducible in \(F[x] \).

(b) \(F_p[\alpha] \) is a field.

(c) \(F_p[\alpha] \) is an integral domain.

Proof. (a) \(\iff \) (b): By 4.2.4(c) \(F_p[\alpha] \) is a commutative ring with identity \(1_F \). Suppose \(p \) is irreducible and let \(\beta \in F_p[\alpha] \) with \(\beta \neq 0_F \). By 4.2.7(c), \(\beta = f^*(\alpha) \) for some \(f \in F[x] \). Then \(f^*(\alpha) \neq 0_F \) and 4.2.7(c), gives \(p \nmid f \). Since \(p \) is irreducible, Exercise 3.3#4 shows that \(\gcd(f,p) = 1_F \). Hence by Lemma 4.3.1 \(\beta = f^*(\alpha) \) is a unit in \(F_p[\alpha] \). Also since \(F \) is a field, \(1_F \neq 0_F \) and since (by 4.2.4(c)) \(1_F = 1_{F_p[\alpha]} \) and \(0_F = 0_{F_p[\alpha]} \), all the conditions of a field (see Definition 2.7.8) hold for \(F_p[\alpha] \).

(b) \(\iff \) (c): If \(F_p[\alpha] \) is a field, then by Corollary 2.7.10 \(F_p[\alpha] \) is an integral domain.

(c) \(\iff \) (a): Suppose \(F_p[\alpha] \) is an integral domain and (for a contradiction) that \(p \) is not irreducible. Since \(p \notin F \), 3.3.2 shows that \(p = gh \) where \(g \) and \(h \) are non constant polynomials of
4.3. $F_p[\alpha]$ WHEN P IS IRREDUCIBLE

degree less than p. Since $g \neq 0_F$ and both g and 0_F have degree less than p, \[4.2.7]\] shows that $g^*(\alpha) \neq 0^*_F(\alpha)$. As $0^*_F(\alpha) = 0_F$ this gives $g^*(\alpha) \neq 0_F$. Similarly, $h^*(\alpha) \neq 0_F$. But

$$g^*(\alpha)h^*(\alpha) = (gh)^*(\alpha) = p^*(\alpha) = 0_F$$

a contradiction since by definition (Ax 11) holds in integral domains (see \[2.7.6]\]. \QED

Corollary 4.3.3. Let F be a field and p an irreducible polynomial in $F[x]$. Then $F_p[\alpha]$ is a field containing F as subring, and α is a root of p in $F_p[\alpha]$.

Proof. By \[4.2.4\] F is a subring of $F_p[\alpha]$. Since p is irreducible, \[4.3.2\] implies that $F_p[\alpha]$ is field. By \[4.2.7\] α is a root of p in $F_p[\alpha]$. \QED

Example 4.3.4. Put $K := \mathbb{R}[x^2+1][\alpha]$. Determine the addition and multiplication in K and show that K is a field.

By \[4.2.7\] we know that α is a root of $x^2 + 1$ in K. Hence $\alpha^2 + 1 = 0$ and so

$$\alpha^2 = -1.$$

By \[4.2.7\] every element of K can be uniquely written as $a + b\alpha$ with $a, b \in \mathbb{R}$. We have

$$(a + b\alpha) + (c + d\alpha) = (a + c) + (b + d)\alpha$$

and

$$(a + b\alpha)(c + d\alpha) = ac + (bc + ad)\alpha + b\alpha^2 = ac + (bc + ad)\alpha + bd(-1) = (ac - bd) + (ad + bc)\alpha.$$

Suppose that $a + b\alpha \neq 0$. Then $\alpha \neq 0$ or $b \neq 0$ and so $a^2 + b^2 > 0$. Also

$$(a + b\alpha) \left(\frac{a}{a^2 + b^2} - \frac{b}{a^2 + b^2}\alpha \right) = \frac{1}{a^2 + b^2}(a + b\alpha)(a - b\alpha) = \frac{1}{a^2 + b^2}(a^2 + b^2) = 1$$

Hence $a + b\alpha$ is a unit in K and so K is a field.

We remark that is now straight forward to verify that

$$\phi : \mathbb{R}[x^2+1][\alpha] \rightarrow \mathbb{C}, \quad a + b\alpha \mapsto a + bi$$

is an isomorphism from $\mathbb{R}[x^2+1][\alpha]$ to the complex numbers \mathbb{C}.

Corollary 4.3.5. Let F be a field and $f \in F[x]$.

(a) Suppose $f \notin F$. Then there exists a field K with F as a subring such that f has a root in K.

(b) There exist a field L with F as a subring, $n \in \mathbb{N}$, and elements $c, a_1, a_2 \ldots, a_n$ in L such that

$$f = c \cdot (x - a_1) \cdot (x - a_2) \cdot \ldots \cdot (x - a_n)$$
Proof. (a) By \(3.3.8\), \(f\) is a product of irreducible polynomials. In particular, there exists an irreducible polynomial \(p\) in \(F[x]\) dividing \(f\). By \(4.3.3\), \(K = F\alpha\) is a field containing \(F\) and \(\alpha\) is a root of \(p\) in \(K\). Since \(p|f\), \(3.4.12\) shows that \(\alpha\) is a root of \(f\) in \(K\).

(b) We will prove (b) by induction on \(\deg f\). If \(\deg f \leq 0\), then \(f \in F\). So (b) holds with \(n = 0, c = f\) and \(L = F\). Suppose that \(k \in \mathbb{N}\) and (b) holds for any field \(F\) and any polynomial of degree \(k\) in \(F[x]\). Let \(f\) be a polynomial of degree \(k + 1\) in \(F[x]\). Then \(\deg f \geq 1\) and so by (a) there exists a field \(K\) with \(F\) as a subring and a root \(\alpha\) of \(f\) in \(K\). By the Factor Theorem \(3.4.11\), \(x - \alpha\) divides \(f\) in \(K[x]\) and so \(f = g \cdot (x - \alpha)\) for some \(g \in K[x]\). Thus \(\deg g = k\) and so by the induction assumption, there exists a field \(L\) with \(K\) as a subring and elements \(c, a_1, \ldots, a_k\) in \(L\) with

\[
g = c \cdot (x - a_1) \cdot \ldots \cdot (x - a_k).
\]

Put \(a_{k+1} = \alpha\). Then

\[
f = g \cdot (x - \alpha) = c \cdot (x - a_1) \cdot \ldots \cdot (x - a_k) \cdot (x - a_{k+1}).
\]

Since \(F\) is a subring of \(K\) and \(K\) is subring of \(L\), \(F\) is subring of \(L\). So (b) holds for polynomials of degree \(k + 1\). Hence, by the Principal of Mathematical Induction, (b) holds for polynomials of arbitrary degree.

Exercises 4.3:

#1. Determine which of the following congruence-class rings are fields.

(a) \(\mathbb{Z}_3[x]/(x^3 + 2x^2 + x + 1)\).
(b) \(\mathbb{Z}_5[x]/(2x^3 - 4x^2 + 2x + 1)\).
(c) \(\mathbb{Z}_2[x]/(x^4 + x^2 + 1)\).

#2. (a) Verify that \(\mathbb{Q}(\sqrt{3}) := \{r + s\sqrt{3} | r, s \in \mathbb{Q}\}\) is a subfield of \(\mathbb{R}\).

(b) Show that \(\mathbb{Q}(\sqrt{3})\) is isomorphic to \(\mathbb{Q}[x]/(x^2 - 3)\).

#3. (a) Show that \(\mathbb{Z}_2[x]/(x^3 + x + 1)\) is a field.

(b) Show that \(x^3 + x + 1\) has three distinct roots in \(\mathbb{Z}_2[x]/(x^3 + x + 1)\).
Chapter 5

Ideals and Quotients

5.1 Ideals

Definition 5.1.1. Let I be a subset of the ring R.

(a) We say that I absorbs R if

$$ra \in I \quad \text{and} \quad ar \in I \quad \text{for all} \ a \in I, r \in R$$

(b) We say that I is an ideal of R if I is a subring of R and I absorbs R.

Theorem 5.1.2 (Ideal Theorem). Let I be a subset of the ring R. Then I is an ideal in R if and only if the following four conditions holds:

(i) $0_R \in I$.

(ii) $a + b \in I$ for all $a, b \in I$.

(iii) $ra \in I$ and $ar \in I$ for all $a \in I$ and $r \in R$.

(iv) $-a \in I$ for all $a \in I$.

Proof. \implies: Suppose first that I is an ideal in R. By Definition 5.1.1 S absorbs R and S is a subring. Thus (iii) holds and by the Subring Theorem 2.6.2 also (i), (ii) and (iv) hold.

\impliedby: Suppose that (ii)-(iv) hold. (iii) implies $ab \in I$ for all $a, b \in I$. So the Subring Theorem 2.6.2 shows that I is a subring of R. By (iii), I absorbs R and so I is an ideal in R.

Example 5.1.3. (1) $\{3n \mid n \in \mathbb{Z}^+\}$ is an ideal in \mathbb{Z}.

(2) Let F be a field and $a \in F$. Then $\{f \in F[x] \mid f^*(a) = 0_F\}$ is an ideal in $F[x]$.

(3) Let R be a ring, I an ideal in R. Then $\{f \in R[x] \mid f_i \in I \text{ for all } i \in \mathbb{N}\}$ is an ideal in $R[x]$.

(4) Let R and S be rings. Then $R \times \{0_S\}$ is an ideal in $R \times S$.

Proof. See Exercise #1

Definition 5.1.4. Let R be a ring.

(a) Let $a \in R$. Then $aR = \{ar \mid a \in R\}$.

(b) Suppose R is commutative and $I \subseteq R$. Then I is called a principal ideal in R if $I = aR$ for some $a \in R$.

Lemma 5.1.5. Let R be a commutative ring with identity and $a \in R$. Then aR is the smallest ideal in R containing a, that is

(a) $a \in aR$,

(b) aR is an ideal in R, and

(c) $aR \subseteq I$, whenever I is an ideal in R with $a \in I$.

Proof. (a): Note that $a = a \cdot 1_R$ and so $a \in aR$.

(b) Let $b, c \in aR$ and $r \in R$. Then

$$b = as \quad \text{and} \quad c = at.$$

for some $s, t \in R$. Thus

$$0_R = a0_R \in aR,$$

$$b + c = as + at = a(s + t) \in aR,$$

$$rb = br = (as)r = a(sr) \in aR,$$

$$-b = -(as) = a(-s) \in aR.$$

So by 5.1.2 aR is an ideal in R.

(c): Let I be any ideal of R containing a. Since $a \in I$ and I absorbs R, $ar \in I$ for all $r \in R$ and so $aR \subseteq I$. □

Definition 5.1.6. Let I be an ideal in the ring R. The relation ‘$\equiv \pmod{I}$’ on R is defined by

$$a \equiv b \pmod{I} \quad \text{if} \quad a - b \in I$$

Remark 5.1.7. (a) Let $a, b, n \in \mathbb{Z}$. Then

$$a \equiv b \pmod{n} \iff a \equiv b \pmod{n\mathbb{Z}}$$
(b) Let \(F \) be a field and \(f, g, p \in F[x] \) with \(p \neq 0_F \). Then

\[
 f \equiv g \pmod{p} \iff f \equiv g \pmod{pF[x]}
\]

Proof. We will prove (b). The proof for (a) is virtually the same.

\[
 f \equiv g \pmod{p} \iff f - g = pk \text{ for some } k \in F[x] \quad \text{\textup{(4.1.3)}}
\]

\[
 \iff f - g \in pF[x] \quad \text{\textup{\text{-Definition of } } pF[x]}
\]

\[
 \iff f \equiv g \pmod{pF[x]} \quad \text{\textup{\text{-Definition of } } \equiv \pmod{I} \textup{ \textup{(5.1.10)}}}
\]

\[\square\]

Proposition 5.1.8. Let \(I \) be an ideal in \(R \). Then \(\equiv \pmod{I} \) is an equivalence relation on \(R \).

Proof. We need to show that \(\equiv \pmod{I} \) is reflexive, symmetric and transitive. Let \(a, b, c \in R \).

Reflexive By \textbf{(2.2.8)} \(a - a = 0_R \) and by the Ideal Theorem \(0_R \in I \). Thus \(a - a \in I \) and so \(a \equiv a \pmod{I} \) by definition of \(\equiv \pmod{I} \).

Symmetric Suppose \(a \equiv b \pmod{I} \). Then \(a - b \in I \) and so by Ideal Theorem \(-(a - b) \in I \). By \textbf{(2.2.8)} \(b - a = -(a - b) \). Hence \(b - a \in I \) and so \(b \equiv a \pmod{I} \) by definition of \(\equiv \pmod{I} \).

Transitive Suppose \(a \equiv b \pmod{I} \) and \(b \equiv c \pmod{I} \), then \(a - b \in I \) and \(b - c \in I \). Hence by the Ideal Theorem \((a - b) + (b - c) \in I \). As \(a - c = (a - b) + (b - c) \) this gives \(a - c \in I \). Thus \(a \equiv c \pmod{I} \).

\[\square\]

Definition 5.1.9. Let \(R \) be a ring and \(I \) an ideal in \(R \).

(a) Let \(a \in I \). Then \(a + I \) denotes the equivalence class of \(\equiv \pmod{I} \) containing \(a \). So

\[
 a + I = \{ b \in R \mid a \equiv b \pmod{I} \} = \{ b \in R \mid a - b \in I \}
\]

\(a + I \) is called the coset of \(I \) in \(R \) containing \(a \).

(b) \(R/I \) is the set of cosets of \(I \) in \(R/I \). So

\[
 R/I = \{ a + I \mid a \in R \}
\]

and \(R/I \) is the set of equivalence classes of \(\equiv \pmod{I} \).

Theorem 5.1.10. Let \(R \) be ring and \(I \) an ideal in \(R \). Let \(a, b \in R \). Then the following statements are equivalent
(a) \(a = b + i \) for some \(i \in I \).
(b) \(a - b = i \) for some \(i \in I \).
(c) \(a - b \in I \).
(d) \(a \equiv b \) (mod \(I \)).
(e) \(b \in a + I \).
(f) \((a + I) \cap (b + I) \neq \emptyset\).
(g) \(a + I = b + I \).
(h) \(a \in b + I \).
(i) \(b \equiv a \) (mod \(I \)).
(j) \(b - a \in I \).
(k) \(b - a = j \) for some \(j \in I \).
(l) \(b = a + j \) for some \(j \in I \).

Proof. (a) \(\iff \) (b): and (k) \(\iff \) (l): This holds by 2.2.9.
(b) \(\iff \) (c): and (j) \(\iff \) (k): Obvious.
(c) \(\iff \) (d): and (i) \(\iff \) (j): This holds by definition of \(\equiv \) (mod \(I \)).

By 5.1.8 we know that \(\equiv \) (mod \(I \)) is an equivalence relation. Also \(a + I \) is the equivalence class of \(a \) and so Theorem 1.5.5 implies that (d)-(i) are equivalent. \(\square \)

Corollary 5.1.11. Let \(I \) be an ideal in the ring \(R \).

(a) Let \(a \in R \). Then \(a + I = \{ a + i \mid i \in I \} \).
(b) \(0_R + I = I \). In particular, \(I \) is a coset of \(I \) in \(R \).
(c) Any two cosets of \(I \) are either disjoint or equal.

Proof. Let \(a, b \in R \).

(a) By 5.1.10(a), (b) we have \(b \in a + I \) if and only if \(b = a + i \) for some \(i \in I \) and so if and only if \(b \in \{ a + i \mid i \in I \} \).
(b) By (a) \(0_R + I = \{ 0 + i \mid i \in I \} = \{ i \mid i \in I \} = I \).
(c) Suppose \(a + I \) and \(b + I \) are not disjoint. Then \((a + I) \cap (b + I) \neq \emptyset \) and 5.1.10(b), (g) shows that \(a + I = b + I \). So two cosets of \(I \) in \(R \) are either disjoint or equal. \(\square \)

Exercises 5.1:

#1. Show that:

(a) \(\{ 3n \mid n \in \mathbb{Z}^+ \} \) is an ideal in \(\mathbb{Z} \).
(b) Let \(F \) be a field and \(a \in F \). Then \(\{ f \in F[x] \mid f^*(a) = 0_F \} \) is an ideal in \(F[x] \).
(c) Let \(R \) be a ring, \(I \) an ideal in \(R \). Then \(\{ f \in R[x] \mid f_i \in I \text{ for all } i \in \mathbb{N} \} \) is an ideal in \(R \).
(d) Let \(R \) and \(S \) be rings. Then \(R \times \{ 0_S \} \) is an ideal in \(R \times S \).
#2. Let I_1, I_2, \ldots, I_n be ideals in the ring R. Show that $I_1 + I_2 + \ldots + I_n$ is the smallest ideal in R containing I_1, I_2, \ldots, I_n and I_n.

#3. Is the set $J = \{ \begin{pmatrix} 0 & 0 \\ 0 & r \end{pmatrix} | r \in \mathbb{R} \}$ an ideal in the ring $M_2(\mathbb{R})$ of 2×2 matrices over \mathbb{R}?

#4. If I is an ideal in the ring R and J is an ideal in the ring S, prove that $I \times J$ is an ideal in the ring $R \times S$.

#5. Let F be a field and I an ideal in $F[x]$. Show that I is a principal ideal. Hint: If $I \neq \{0_F\}$ choose $d \in I$ with $d \neq 0_F$ and $\deg(d)$ minimal. Show that $I = F[x]d$.

#6. Let $\Phi : R \to S$ be a homomorphism of rings and let J be an ideal in S. Put $I = \{ a \in R | \Phi(a) \in J \}$. Show that I is an ideal in R.

5.2 Quotient Rings

Proposition 5.2.1. Let I be an ideal in R and $a, b, \tilde{a}, \tilde{b} \in R$ with

$$a + I = \tilde{a} + I \quad \text{and} \quad b + I = \tilde{b} + I.$$

Then

$$(a + b) + I = (\tilde{a} + \tilde{b}) + I \quad \text{and} \quad ab + I = \tilde{a}\tilde{b} + I.$$

Proof. Since $a + I = \tilde{a} + I$ \([5.1.10]\) implies that $\tilde{a} = a + i$ for some $i \in I$. Similarly $\tilde{b} = b + j$ for some $j \in I$.

Thus

$$\tilde{a} + \tilde{b} = (a + i) + (b + j) = (a + b) + (i + j).$$

Since $i, j \in I$ and I is closed under addition, $i + j \in I$ and so by 5.1.10 $(a + b) + I = (\tilde{a} + \tilde{b}) + I$.

Also

$$\tilde{a}\tilde{b} = (a + i)(b + j) = ab + (aj + ib + ij)$$

Since $i, j \in I$ and I absorbs R we conclude that aj, ib and ij all are in I. Since I is closed under addition this implies that $aj + ib + ij \in I$ and so $ab + I = \tilde{a}\tilde{b} + I$ by 5.1.10. \qed

Definition 5.2.2. Let I be an ideal in the ring R. Then we define an addition $+$ and multiplication \cdot on R by

$$(a + I) + (b + I) = (a + b) + I \quad \text{and} \quad (a + I) \cdot (b + I) = ab + I$$

for all $a, b \in R$.

Note that by the preceding proposition the addition and multiplication on R/I are well defined.

Remark 5.2.3. (a) Let $n \in \mathbb{Z}$. Then $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$.

(b) Let F be a field and $p \in F[x]$. Then $F[x]/(p) = F[x]/pF[x]$.

Proof. This follows from Remark 5.1.7. □

Theorem 5.2.4. Let R be a ring and I an ideal in R

(a) The function $\pi : R \to R/I$, $a \to a + I$ is an onto homomorphism.

(b) $(R/I, +, \cdot)$ is a ring.

(c) $0_{R/I} = 0_R + I = I$.

(d) If R is commutative, then R/I is commutative.

(e) If R has an identity, then R/I has an identity and $1_{R/I} = 1_R + I$.

Proof. (a) Let $a, b \in R$. Then
\[
\pi(a + b) \overset{\text{Def}}{=} (a + b) + I \overset{\text{Def}}{=} (a + I) + (b + I) \overset{\text{Def}}{=} \pi(a) + \pi(b)
\]
and
\[
\pi(ab) \overset{\text{Def}}{=} ab + I \overset{\text{Def}}{=} (a + I)(b + I) \overset{\text{Def}}{=} \pi(a)\pi(b)
\]
So π is a homomorphism. Let $u \in R/I$. By definition, $R/I = \{a + I \mid a \in R\}$ and so there exists $a \in R$ with $u = a + I$. Thus $\pi(a) = a + I = u$ and so π is onto.

(b), (c) and (d): By (a) π is an onto homomorphism. Thus we can apply E.0.3 and conclude that (b), (c) and (d) hold.

(e): By (a) π is an onto homomorphism. Thus (e) follows from 2.10.7(d). □

Lemma 5.2.5. Let R be a ring and I an ideal in R. Let $r \in R$. Then the following statements are equivalent:

(a) $r \in I$.

(b) $r + I = I$.

(c) $r + I = 0_{R/I}$.

Proof. (a) \iff (b): By 5.1.10 $r \in 0_R + I$ if and only of $r + I = 0_R + I$. By 5.2.4(c) $0_R + I = I$ and so (a) and (b) are equivalent.

(b) \iff (c): By 5.2.4(c) $0_{R/I} = I$ and so (b) and (c) are equivalent. □

Definition 5.2.6. (a) Let $f : R \to S$ be a homomorphism of rings. Then
\[
\ker f = \{a \in R \mid f(a) = 0_R\}.
\]
\[
\ker f \text{ is called the kernel of } f.
\]
(b) Let I be an ideal in the ring R. The function
\[\pi : R \to R/I, \quad r \to r + I \]
is called the natural homomorphism from R to R/I.

Lemma 5.2.7. Let $f : R \to S$ be homomorphism of rings. Then $\ker f$ is an ideal in R.

Proof. By definition, $\ker f$ is a subset of R. We will now verify the four conditions of the Ideal Theorem 5.1.2. So let $a, b \in \ker f$ and $r \in R$. By definition of $\ker f$,
\[
(a) \quad f(a + b) = f(a) + f(b) = 0_S \quad \text{and} \quad f(b) = 0_S.
\]
(i) $f(ra) = f(r)f(a) = f(r)0_S = 0_S$ and so $ra \in \ker f$ by definition of $\ker f$. Similarly, $ar \in \ker f$.

(ii) $f(0_R) = 0_S$ and so $0_R \in \ker f$ by definition of $\ker f$.

(iii) $f(-a) = -f(a) = 0_S$ and so $-a \in \ker f$ by definition of $\ker f$.

\[\square \]

Example 5.2.8. Define
\[\Phi : \mathbb{R}[x] \to \mathbb{C}, \quad f \mapsto f^*(i) \]
Verify that Φ is a homomorphism and compute $\ker \Phi$.

Define $\rho : \mathbb{R} \to \mathbb{C}, r \to r$. Then ρ is a homomorphism and Φ is the function ρ_i from Lemma 3.4.1. So Φ is a homomorphism.

Let $f \in F[x]$. We need to determine when $f^*(i) = 0$. According to the Division algorithm, $f = (x^2 + 1) \cdot q + r$, where $q, r \in \mathbb{R}[x]$ with $\deg(r) < \deg(x^2 + 1) = 2$. Then $r = a + bx$ for some $a, b \in \mathbb{R}$ and so
\[
(*) \quad f^*(i) = \left((x^2 + 1) \cdot q + r\right)^*(i) = (i^2 + 1) \cdot q^*(i) + r^*(i) = 0 \cdot q^*(i) + (a + bi) = a + bi
\]
It follows that
\[f \in \ker \Phi \quad \iff \quad \Phi(f) = 0 \quad \text{-- definition of } \ker \Phi \]
\[\iff \quad f^*(i) = 0 \quad \text{-- definition of } \Phi \]
\[\iff \quad a + bi = 0 \quad \text{-- } (*) \]
\[\iff \quad a = 0 \text{ and } b = 0 \quad \text{-- Property of } \mathbb{C} \]
\[\iff \quad a + bx = 0 \quad \text{-- definition of polynomial ring} \]
\[\iff \quad r = 0 \quad \text{-- } r = a + bx \]
\[\iff \quad f = (x^2 + 1) \cdot q \text{ for some } q \in \mathbb{R}[x] \quad \text{-- Division algorithm} \]
\[\iff \quad f \in (x^2 + 1) \mathbb{R}[x] \quad \text{-- Definition of } (x^2 + 1) \mathbb{R}[x] \]
Thus $\ker \Phi = (x^2 + 1) \mathbb{R}[x]$.

5.2. QUOTIENT RINGS

131
Lemma 5.2.9. Let R be a ring, I an ideal in R and $\pi : R \to R/I, a \to a + I$ the natural homomorphism from R to I. Then $\ker \pi = I$. In particular, a subset of I is an ideal in R if and only if it is the kernel of a ring homomorphism with domain R.

Proof. Let $r \in R$. Then

$$r \in \ker \pi \iff \pi(r) = 0_{R/I} \quad \text{definition of } \ker \pi$$

$$\iff r + I = 0_{R/I} \quad \text{definition of } \pi$$

$$\iff r \in I \quad \text{5.2.5}$$

Thus $\ker \pi = I$. \hfill \square

Lemma 5.2.10. Let $f : R \to S$ be a ring homomorphism.

(a) Let $a, b \in R$. Then

$$f(a) = f(b) \iff a - b \in \ker f$$

$$\iff a + \ker f = b + \ker f \quad \text{5.1.10}$$

(b) f is 1-1 if and only if $\ker f = \{0_R\}$.

Proof. \(\heartsuit\)

$$f(a) = f(b)$$

$$\iff f(a) - f(b) = 0_S \quad \text{2.2.8}[1]$$

$$\iff f(a - b) = 0_S \quad \text{2.10.7}[c]$$

$$\iff a - b \in \ker f \quad \text{Definition of } \ker f$$

$$\iff a + \ker f = b + \ker f \quad \text{5.1.10}$$

\(\heartsuit\) \implies: Suppose f is 1-1 and let $a \in R$. Then

$$a \in \ker f$$

$$\iff f(a) = 0_S \quad \text{Definition of } \ker f$$

$$\iff f(a) = f(0_R) \quad \text{2.10.7}[a]$$

$$\iff a = 0_R \quad f \text{ is 1-1}$$

Thus $\ker f = \{0_R\}$. \hfill \square

\(\iff\): Suppose $\ker f = \{0_R\}$ and let $a, b \in R$ with $f(a) = f(b)$. Then by \(\heartsuit\) $a - b \in \ker f$. As $\ker f = \{0_R\}$ this gives $a - b = 0_R$, so $a = b$ by \(\heartsuit\). Hence f is 1-1. \hfill \square
Theorem 5.2.11 (First Isomorphism Theorem). Let \(f : R \rightarrow S \) be a ring homomorphism. Recall that \(\text{Im } f = \{ f(a) \mid a \in R \} \). The function

\[
\overline{f} : R/\ker f \rightarrow \text{Im } f, \quad (a + \ker f) \mapsto f(a)
\]

is a well-defined ring isomorphism. In particular \(R/\ker f \) and \(\text{Im } f \) are isomorphic rings.

Proof. By 5.2.10 \(f(a) = f(b) \) if and only if \(a + \ker f = b + \ker f \). The forward direction shows that \(\overline{f} \) is 1-1 and backwards direction shows that \(\overline{f} \) is well-defined. If \(s \in \text{Im } f \), then \(s = f(a) \) for some \(a \in R \) and so \(\overline{f}(a + \ker f) = f(a) = s \). Hence \(\overline{f} \) is onto. It remains to verify that \(\overline{f} \) is a ring homomorphism.

We compute

\[
\overline{f}((a + \ker f) + (b + \ker f)) = \overline{f}(a + b) \quad \text{Def} \quad \overline{f}((a + \ker f) + (b + \ker f)) = \overline{f}(a + \ker f) + \overline{f}(b + \ker f) \quad \text{Def} \quad f \quad \text{hom}
\]

and

\[
\overline{f}((a + \ker f) \cdot (b + \ker f)) = \overline{f}(ab) \quad \text{Def} \quad \overline{f}((a + \ker f) \cdot (b + \ker f)) = \overline{f}(a + \ker f) \cdot \overline{f}(b + \ker f) \quad \text{Def} \quad f \quad \text{hom}
\]

and so \(\overline{f} \) is a homomorphism. \(\square \)

Example 5.2.12. Let \(n \) and \(m \) be non-zero integers with \(\gcd(n, m) = 1 \). Apply the isomorphism theorem to the homomorphism

\[
f : \mathbb{Z} \rightarrow \mathbb{Z}_n \times \mathbb{Z}_m, \quad a \rightarrow ([a]_n, [b]_m)
\]

We first compute \(\ker f \)

\[
\begin{align*}
a \in \ker f \\
\iff & \quad f(a) = 0_{\mathbb{Z}_n \times \mathbb{Z}_m} \quad \text{Def} \text{ of } \ker f \\
\iff & \quad ([a]_n, [b]_m) = ([0]_n, [0]_m) \quad \text{Def } f \\
\iff & \quad [a]_n = [0]_n \quad \text{and} \quad [b]_m = [0]_m \quad \text{Exercise 13.2} \\
\iff & \quad n|a \quad \text{and} \quad m|b \quad \text{??} \\
\iff & \quad nm|a \quad \text{gcd}(n, m) = 1, \text{Exercise } ??#2 \\
\iff & \quad a = nmk \quad \text{for some } k \in \mathbb{Z} \quad \text{Def } \text{of } \text{divide} \\
\iff & \quad a \in nm\mathbb{Z} \quad \text{Def } nm\mathbb{Z}
\end{align*}
\]

Thus \(\ker f = nm\mathbb{Z} \) and so
\[\mathbb{Z}/\ker f = \mathbb{Z}/nm\mathbb{Z} = \mathbb{Z}_{nm} \]

where the last equality holds by \(5.2.3(a)\).

By the First Isomorphism Theorem \(\mathbb{Z}/\ker f \) is isomorphic to \(\text{Im } f \) and so

\[\mathbb{Z}_{nm} \quad \text{is isomorphic to} \quad \text{Im } f. \]

Thus

\[|\text{Im } f| = |\mathbb{Z}_{nm}| = nm. \]

Also

\[|\mathbb{Z}_n \times \mathbb{Z}_m| = |\mathbb{Z}_n| \cdot |\mathbb{Z}_m| = nm. \]

Hence \(|\text{Im } f| = |\mathbb{Z}_n \times \mathbb{Z}_m| \). Since \(\text{Im } f \subseteq \mathbb{Z}_n \times \mathbb{Z}_m \) this gives \(\text{Im } f = \mathbb{Z}_n \times \mathbb{Z}_m \). This gives

\[\mathbb{Z}_{nm} \quad \text{is isomorphic to} \quad \mathbb{Z}_n \times \mathbb{Z}_m. \]
Appendix A

Logic

A.1 Rules of Logic

In the following we collect a few statements which are always true.

Lemma A.1.1. Let P, Q and R be statements, let T be a true statement and F a false statement. Then each of the following statements holds.

(LR 1) $F \Rightarrow P$.
(LR 2) $P \Rightarrow T$.
(LR 3) not-(not-P) $\iff P$.
(LR 4) (not-$P \Rightarrow F$) $\Rightarrow P$.
(LR 5) P or T.
(LR 6) not-$(P$ and $F)$.
(LR 7) $(P$ and T) $\iff P$.
(LR 8) $(P$ or F) $\iff P$.
(LR 9) $(P$ and P) $\iff P$.
(LR 10) $(P$ or P) $\iff P$.
(LR 11) P or not-P.
(LR 12) not-$(P$ and not-P).
(LR 13) $(P$ and Q) $\iff (Q$ and P).
(LR 14) $(P$ or Q) $\iff (Q$ or $P)$.
(LR 15) \((P \iff Q) \iff ((P \land Q) \lor (\lnot P \land \lnot Q))\)

(LR 16) \((P \implies Q) \iff (\lnot P \lor Q)\).

(LR 17) \(\lnot (P \implies Q) \iff (P \land \lnot Q)\).

(LR 18) \((P \land (P \implies Q)) \implies Q\).

(LR 19) \(((P \implies Q) \land (Q \implies P)) \iff (P \iff Q)\).

(LR 20) \((P \implies Q) \iff (\lnot Q \implies \lnot P)\).

(LR 21) \((P \iff Q) \iff (\lnot P \iff \lnot Q)\).

(LR 22) \(\lnot (P \land Q) \iff (\lnot P \lor \lnot Q)\).

(LR 23) \((P \land Q) \iff (P \lor Q)\).

(LR 24) \(((P \land Q) \land R) \iff (P \land (Q \land R))\).

(LR 25) \(((P \lor Q) \land R) \iff (P \land (Q \lor R))\).

(LR 26) \(((P \land Q) \lor R) \iff ((P \lor R) \land (Q \lor R))\).

(LR 27) \(((P \lor Q) \land R) \iff ((P \lor R) \land (Q \lor R))\).

(LR 28) \(((P \implies Q) \land (Q \implies R)) \implies (P \implies R)\).

(LR 29) \(((P \iff Q) \land (Q \iff R)) \implies (P \iff R)\).

Proof. If any of these statements are not evident to you, you should use a truth table to verify it. \qed
Appendix B

Relations, Functions and Partitions

B.1 The inverse of a function

Definition B.1.1. Let $f : A \rightarrow B$ and $g : B \rightarrow A$ be functions.

(a) g is called a left inverse of f if $g \circ f = \text{id}_A$.

(b) g is called a right inverse of g if $f \circ g = \text{id}_B$.

(c) g is a called an inverse of f if $g \circ f = \text{id}_A$ and $f \circ g = \text{id}_B$.

Lemma B.1.2. Let $f : A \rightarrow B$ and $h : B \rightarrow A$ be functions. Then the following statements are equivalent.

(a) g is a left inverse of f.

(b) f is a right inverse of g.

(c) $g(f(a)) = a$ for all $a \in A$.

(d) For all $a \in A$ and $b \in B$: $f(a) = b \implies a = g(b)$

Proof. (a) \implies (b): Suppose that g is a left inverse of f. Then $g \circ f = \text{id}_A$ and so f is a right inverse of g.

(b) \implies (c): Suppose that f is a right inverse of g. Then by definition of ‘right inverse’

(1) $g \circ f = \text{id}_A$

Let $a \in A$. Then

\[
g(f(a)) = (g \circ f)(a) \quad \text{definition of composition} \\
= \text{id}_A(a) \quad -(1) \\
= a \quad \text{definition of id}_A
\]
Suppose that \(g(f(a)) = a \) for all \(a \in A \). Let \(a \in A \) and \(b \in B \) with \(f(a) = b \). Then by the principle of substitution \(g(f(a)) = g(b) \), and since \(g(f(a)) = a \), we get \(a = g(b) \).

Let \(a \in A \) and put

\[
(b) \quad f(a) = b \implies a = g(b)
\]

Then by (2)

\[
(4) \quad a = g(b)
\]

and so

\[
(g \circ f)(a) = g(f(a)) \quad \text{definition of composition}
\]

\[
= g(b) \quad (3)
\]

\[
= a \quad (4)
\]

\[
= \text{id}_A(a) \quad \text{definition of id}_A
\]

Thus by \(1.3.1.1\) \(g \circ f = \text{id}_A \). Hence \(g \) is a left inverse of \(f \).

\[\square\]

Lemma B.1.3. Let \(f : A \to B \) and \(h : B \to A \) be functions. Then the following statements are equivalent.

(a) \(g \) is an inverse of \(f \).

(b) \(f \) is an inverse of \(g \).

(c) \(g(fa) = a \) for all \(a \in A \) and \(f(gb) = b \) for all \(b \in A \).

(d) For all \(a \in A \) and \(b \in B \):

\[
fa = b \iff a = gb
\]

Proof. Note that \(g \) is an inverse of \(f \) if and only if \(g \) is a left and a right inverse of \(f \). Thus the lemma follows from \(1.3.1.2\) \(\square\)

Theorem B.1.4. Let \(f : A \to B \) be a function and suppose \(A \neq \emptyset \).

(a) \(f \) is 1-1 if and only if \(f \) has a right inverse.

(b) \(f \) is onto if and only if \(f \) has left inverse.
(c) \(f \) is a 1-1 correspondence if and only \(f \) has inverse.

Proof. \(\iff \): Since \(A \) is not empty we can fix an element \(a_0 \in A \). Let \(b \in B \). If \(b \in \Im f \) choose \(a_b \in A \) with \(f a_b = b \). If \(b \notin \Im f \), put \(a_b = a_0 \). Define \(g : B \to A, \ b \to a_b \)

(a) Suppose \(f \) is 1-1. Let \(a \in A \) and \(b \in B \) with \(b = f a \). Then \(b \in \Im f \) and \(f a_b = b = f a \). Since \(f \) is 1-1, we conclude that \(a_b = b \) and so \(g a = a_b = b \). Thus by B.1.2 \(g \) is right inverse of \(f \).

(b) Suppose \(f \) is onto. Let \(a \in A \) and \(b \in B \) with \(g b = a \). Then \(a = a_b \). Since \(f \) is onto, \(B = \Im f \) and so \(a \in \Im f \) and \(f(a_b) = b \). Hence \(f a = b \) and so by B.1.2 (with the roles of \(f \) and \(f \) interchanged), \(g \) is left inverse of \(f \).

(c) Suppose \(f \) is a 1-1 correspondence. Then \(f \) is 1-1 and onto and so by the proof of (a) and (b), \(g \) is left and right inverse of \(f \). So \(g \) is an inverse of \(f \).

\(\iff \):

(a) Suppose \(g \) is a left inverse of \(f \) and let \(a, c \in A \) with \(f a = f c \). Then by the principle of substitution, \(g(f a) = g(f c) \). By B.1.2 \(g(f a) = a \) and \(g(f b) = b \). So \(a = b \) and \(f \) is 1-1.

(b) Suppose \(g \) is a right inverse of \(f \) and let \(b \in B \). Then by B.1.2 \(f(g b) = b \) and so \(f \) is onto.

(c) Suppose \(f \) has an inverse. Then \(f \) has a left and a right inverse and so by (a) and (b), \(f \) is 1-1 and onto. So \(f \) is a 1-1 correspondence.

\(\square \)

B.2 Partitions

Definition B.2.1. Let \(A \) be a set and \(\Delta \) set of non-empty subsets of \(A \).

(a) \(\Delta \) is called a partition of \(A \) if for each \(a \in A \) there exists a unique \(D \in \Delta \) with \(a \in D \).

(b) \(\sim_{\Delta} = \left(A, A, \{ (a, b) \in A \times A \mid \{a, b\} \subseteq D \text{ for some } D \in \Delta \} \right) \).

Example B.2.2. The relation corresponding to a partition \(\Delta = \{ \{1, 3\}, \{2\} \} \) of \(A = \{1, 2, 3\} \)

\(\{1, 3\} \) is the only member of \(\Delta \) containing 1, \(\{2\} \) is the only member of \(\Delta \) containing 2 and \(\{1, 3\} \) is the only member of \(\Delta \) containing 3. So \(\Delta \) is a partition of \(A \).

Note that \(\{1, 2\} \) is not contained in an element of \(\Delta \) and so \(1 \not\sim_{\Delta} 2 \). \(\{1, 3\} \) is contained in \(\{1, 3\} \) and so \(1 \sim_{\Delta} 3 \). Altogether the relation \(\sim_{\Delta} \) can be described by the following table

\[
\begin{array}{c|ccc}
\sim_{\Delta} & 1 & 2 & 3 \\
\hline
1 & x & - & x \\
2 & - & x & - \\
3 & x & - & x \\
\end{array}
\]
where we placed an \(x \) in row \(a \) and column \(b \) of the table iff \(a \sim \Delta b \).

We now computed the classes of \(\sim_\Delta \). We have

\[
[1] = \{ b \in A \mid 1 \sim_\Delta b \} = \{ 1, 3 \}
\]

\[
[2] = \{ b \in A \mid 2 \sim_\Delta b \} = \{ 2 \}
\]

and

\[
[3] = \{ b \in A \mid 3 \sim_\Delta b \} = \{ 1, 3 \}
\]

Thus \(A/\sim_\Delta = \{ \{ 1, 3 \}, \{ 2 \} \} = \Delta \).

So the set of classes of relation \(\sim_\Delta \) is just the original partition \(\Delta \). The next theorem shows that this is true for any partition.

Proposition B.2.3. Let \(A \) be set.

(a) If \(\sim \) is an equivalence relation, then \(A/\sim \) is a partition of \(A \) and \(\sim = \sim_{A/\sim} \).

(b) If \(\Delta \) is partition of \(A \), then \(\sim_\Delta \) is an equivalence relation and \(\Delta = A/\sim_\Delta \).

Proof.

(a) Let \(a \in A \). Since \(\sim \) is reflexive we have \(a \sim a \) and so \(a \in [a] \) by definition of \([a] \). Let \(D \in A/\sim \) with \(a \in D \). Then \(D = [b] \) for some \(b \in A \) and so \(a \in [b] \). \[1.5.5\] implies \([a] = [b] = D \). So \([a] \) is the unique member of \(A/\sim \) containing \(a \). Thus \(A/\sim \) is a partition of \(A \). Put \(\approx = \sim_{A/\sim} \). Then \(a \approx b \) if and only if \(\{ a, b \} \subseteq D \) for some \(D \in A/\sim \). We need to show that \(a \approx b \) if and only if \(a \sim b \).

So let \(a, b \in A \) with \(a \approx b \). Then \(\{ a, b \} \subseteq D \) for some \(D \in A/\sim \). By the previous paragraph, \([a] \) is the only member of \(A/\sim \) containing \(a \). Thus \(D = [a] \) and similarly \(D = [b] \). Thus \([a] = [b] \) and \[1.5.5\] implies \(a \sim b \).

We proved that \(a \approx b \) if and only if \(a \sim b \) and so \(\approx \) is proved.

(b) Let \(a \in A \). Since \(\Delta \) is a partition, there exists \(D \in \Delta \) with \(a \in \Delta \). Thus \(\{ a, a \} \subseteq D \) and hence \(a \sim_\Delta a \). So \(\sim_\Delta \) is reflexive. If \(a \sim_\Delta b \) then \(\{ a, b \} \subseteq D \) for some \(D \in \Delta \). Then also \(\{ b, a \} \subseteq D \) and hence \(b \sim_\Delta a \). There \(\sim \) is symmetric. Now suppose that \(a, b, c \in A \) with \(a \sim_\Delta b \) and \(b \sim_\Delta c \). Then there exists \(D, E \in \Delta \) with \(a, b \in D \) and \(b, c \in E \). Since \(b \) is contained in a unique member of \(\Delta \), \(D = E \) and so \(a \sim_\Delta c \). Thus \(\sim_\Delta \) is an equivalence relation.

It remains to show that \(\Delta = A/\sim_\Delta \). For \(a \in A \) let \([a] = [a]_{\sim_\Delta} \). We will prove:

(\ast) \quad Let \(D \in \Delta \) and \(a \in D \). Then \(D = [a] \).

Let \(b \in D \). Then \(\{ a, b \} \subseteq D \) and so \(a \sim_\Delta b \) by definition of \(\sim_\Delta \). Thus \(b \in [a] \) by definition of \([a] \). It follows that \(D \subseteq [a] \).

Let \(b \in [a] \). Then \(a \sim_\Delta b \) by definition of \([a] \) and thus \(\{ a, b \} \subseteq E \) for some \(E \in \Delta \). Since \(\Delta \) is a partition, \(a \) is contained in a unique member of \(\Delta \) and so \(E = D \). Thus \(b \in D \) and so \([a] \subseteq D \). We proved \(D \subseteq [a] \) and \([a] \subseteq D \) and so \([a] \) holds.

Let \(D \in \Delta \). Since \(\Delta \) is a partition of \(A \), \(D \) is non-empty subset of \(A \). So we can pick \(a \in D \) and \([a] \) implies \(D = [a] \). Thus \(D \in A/\sim_\Delta \) and so \(\Delta \subseteq A/\sim_\Delta \).

Let \(E \in A/\sim_\Delta \). Then \(E = [a] \) for some \(a \in A \). Since \(\Delta \) is a partition, \(a \in D \) for some \(D \in \Delta \).

\([a] \) gives \(D = [a] = E \) and so \(E \in \Delta \). This shows \(A/\sim_\Delta \subseteq \Delta \).

Together with \(\Delta \subseteq A/\sim_\Delta \) this gives \(\Delta = A/\sim_\Delta \) and \(\Delta \) is proved. \(\square \)
Appendix C

Real numbers, integers and natural numbers

In this part of the appendix we list properties of the real numbers, integers and natural numbers we assume to be true.

C.1 Definition of the real numbers

Definition C.1.1. The real numbers are a quadtruple \((\mathbb{R}, +, \cdot, \leq)\) such that

(R i) \(\mathbb{R}\) is a set (whose elements are called real numbers)

(R ii) + is a function (called addition) , \(\mathbb{R} \times \mathbb{R}\) is a subset of the domain of + and

\[a + b \in \mathbb{R} \]

(Closure of addition)

for all \(a, b \in \mathbb{R}\), where \(a \oplus b\) denotes the image of \((a, b)\) under +;

(R iii) \(\cdot\) is a function (called multiplication), \(\mathbb{R} \times \mathbb{R}\) is a subset of the domain of \(\cdot\) and

\[a \cdot b \in \mathbb{R} \]

(Closure of multiplication)

for all \(a, b \in \mathbb{R}\) where \(a \cdot b\) denotes the image of \((a, b)\) under \(\cdot\). We will also use the notion \(ab\) for \(a \cdot b\).

(R iv) \(\leq\) is a relation from \(\mathbb{R}\) and \(\mathbb{R}\);

and such that the following statements hold:

(R Ax 1) \(a + b = b + a\) for all \(a, b \in \mathbb{R}\). (Commutativity of Addition)

(R Ax 2) \(a + (b + c) = (a + b) + c\) for all \(a, b, c \in \mathbb{R}\); (Associativity of Addition)
There exists an element in \(\mathbb{R} \), denoted by 0 (and called zero), such that \(a + 0 = a \) and \(0 + a = a \) for all \(a \in \mathbb{R} \); (Existence of Additive Identity)

For each \(a \in \mathbb{R} \) there exists an element in \(\mathbb{R} \), denoted by \(-a\) (and called negative \(a \)) such that \(a + (-a) = 0 \) and \((-a) + a = 0\); (Existence of Additive Inverse)

\(a(b + c) = ab + ac \) for all \(a, b, c \in \mathbb{R} \). (Right Distributivity)

\((a + b)c = ac + bc\) for all \(a, b, c \in \mathbb{R}\) (Left Distributivity)

\((ab)c = a(bc)\) for all \(a, b, c \in \mathbb{R}\) (Associativity of Multiplication)

There exists an element in \(\mathbb{R} \), denoted by 1 (and called one), such that \(1a = a \) for all \(a \in \mathbb{R} \). (Multiplicative Identity)

For each \(a \in \mathbb{R} \) with \(a \neq 0 \) there exists an element in \(\mathbb{R} \), denoted by \(\frac{1}{a} \) (and called 'a inverse') such that \(aa^{-1} = 1 \) and \(a^{-1}a = 1 \); (Existence of Multiplicative Inverse)

For all \(a, b \in \mathbb{R} \), \((a \leq b \text{ and } b \leq a) \iff (a = b) \)

For all \(a, b, c \in \mathbb{R} \), \((a \leq b \text{ and } b \leq c) \implies (a \leq c) \)

For all \(a, b, c \in \mathbb{R} \), \((a \leq b \text{ and } 0 \leq c) \implies (ac \leq bc) \)

For all \(a, b, c \in \mathbb{R} \), \((a \leq b) \implies (a + c \leq b + c) \)

Each bounded, non-empty subset of \(\mathbb{R} \) has a least upper bound. That is, if \(S \) is a non-empty subset of \(\mathbb{R} \) and there exists \(u \in \mathbb{R} \) with \(s \leq u \) for all \(s \in S \), then there exists \(m \in \mathbb{R} \) such that for all \(r \in \mathbb{R} \), \(\left(s \leq r \text{ for all } s \in S \right) \iff \left(m \leq r \right) \)

For all \(a, b \in \mathbb{R} \) such that \(b \neq 0 \) and \(0 \leq b \) there exists a positive integer \(n \) such that \(a \leq nb \). (Here \(na \) is inductively defined by \(1a = a \) and \((n + 1)a = na + a \).)

Definition C.1.2. The relations \(<, \geq \text{ and } >\) on \(\mathbb{R} \) are defined as follows: Let \(a, b \in \mathbb{R} \), then

(a) \(a < b \) if \(a \leq b \) and \(a \neq b \).

(b) \(a \geq b \) if \(b \leq a \).

(c) \(a > b \) if \(b \leq a \) and \(a \neq b \).
C.2 Algebraic properties of the integers

Lemma C.2.1. Let \(a, b, c \in \mathbb{Z} \). Then

1. \(a + b \in \mathbb{Z} \).
2. \(a + (b + c) = (a + b) + c \).
3. \(a + b = b + a \).
4. \(a + 0 = a = 0 + a \).
5. There exists \(x \in \mathbb{Z} \) with \(a + x = 0 \).
6. \(ab \in \mathbb{Z} \).
7. \(a(bc) = (ab)c \).
8. \(a(b + c) = ab + ac \) and \((a + b)c = ac + bc \).
9. \(ab = ba \).
10. \(a \cdot 1 = a = 1 \cdot a \).
11. If \(ab = 0 \) then \(a = 0 \) or \(b = 0 \).

C.3 Properties of the order on the integers

Lemma C.3.1. Let \(a, b, c \) be integers.

(a) Exactly one of \(a < b, a = b \) and \(b < a \) holds.
(b) If \(a < b \) and \(b < c \), then \(a < c \).
(c) If \(c > 0 \), then \(a < b \) if and only if \(ac < bc \).
(d) If \(c < 0 \), then \(a < b \) if and only if \(bc < ac \).
(e) If \(a < b \), then \(a + c < b + c \).
(f) 1 is the smallest positive integer.

C.4 Properties of the natural numbers

Lemma C.4.1. Let \(a, b \in \mathbb{N} \). Then

(a) \(a + b \in \mathbb{N} \).
(b) \(ab \in \mathbb{N} \).

Theorem C.4.2 (Well-Ordering Axiom). Let \(S \) be a non-empty subset of \(\mathbb{N} \). Then \(S \) has a minimal element \(\Box \).
Appendix D

The Associative, Commutative and Distributive Laws

D.1 The General Associative Law

Definition D.1.1. Let G be a set.

(a) A binary operation on G is a function $+$ such that $G \times G$ is a subset of the domain of $+$ and $+(a,b) \in G$ for all $a,b \in G$.

(b) If $+$ is a binary operation on G and $a,b \in G$, then we write $a + b$ for $+(a, b)$.

(c) A binary operation $+$ on G is called associative if $a + (b + c) = (a + b) + c$ for all $a,b,c \in G$.

Definition D.1.2. Let G be a set and $+: G \times G \to G, (a, b) \to a + b$ a function. Let n be a positive integer and $a_1, a_2, \ldots, a_n \in G$. Define $\sum_{i=1}^{1} a_i = a_1$ and inductively for $n > 1$

$$\sum_{i=1}^{n} a_i = \left(\sum_{i=1}^{n-1} a_i\right) + a_n.$$

so $\sum_{i=1}^{n} a_i = \left(\ldots \left(\left(\sum_{i=1}^{a_2} a_2\right) + a_3\right) + \ldots + a_{n-2}\right) + a_{n-1} + a_n$.

Inductively, we say that z is a sum of (a_1, \ldots, a_n) provided that one of the following holds:

1. $n = 1$ and $z = a_1$.

2. $n > 1$ and there exists an integer k with $1 \leq k < n$ and $x, y \in G$ such that x is a sum of (a_1, \ldots, a_k), y is a sum of $(a_{k+1}, a_{k+2}, \ldots, a_n)$ and $z = x + y$.

For example a is the only sum of (a), $a + b$ is the only sum of (a, b), $a + (b + c)$ and $(a + b) + c$ are the sums of (a, b, c), and $a + (b + (c + d)), a + ((b + c) + d), (a + b) + (c + d), (a + (b + c)) + d$ and $((a + b) + c) + d$ are the sums of (a, b, c, d).
Theorem D.1.3 (General Associative Law). Let $+$ be an associative binary operation on the set G. Then any sum of (a_1, a_2, \ldots, a_n) is equal to $\sum_{i=1}^{n} a_i$.

Proof. The proof is by complete induction. For a positive integer n let $P(n)$ be the statement:

If a_1, a_2, \ldots, a_n are elements of G and z is a sum of (a_1, a_2, \ldots, a_n), then $z = \sum_{i=1}^{n} a_i$.

Suppose now that n is a positive integer with n and $P(k)$ is true all integer $1 \leq k < n$. Let a_1, a_2, \ldots, a_n be elements of G and z is a sum of (a_1, a_2, \ldots, a_n). We need to show that $z = \sum_{i=1}^{n} a_i$.

Assume that $n = 1$. By definition a_1 is the only sum of (a_1) and $\sum_{i=1}^{1} a_1 = a_1$. So $z = a_1 = \sum_{i=1}^{n} a_i$.

Assume next that $n > 1$. We will first show that

(*) If u is any sum of (a_1, \ldots, a_{n-1}), then $u + a_n = \sum_{i=1}^{n} a_i$.

Indeed by the induction assumption, $P(n-1)$ is true and so $u = \sum_{i=1}^{n-1} a_i$. Thus $u + a_n = \sum_{i=1}^{n-1} a_i + a_n$ and the definition of $\sum_{i=1}^{n} a_i$ implies $u + a_n = \sum_{i=1}^{n} a_i$. So (*) is true.

By the definition of ‘sum’ there exists $1 \leq k < n$, a sum x of (a_1, \ldots, a_k) and a sum y of (a_{k+1}, \ldots, a_n) such that $z = x + y$.

Case 1: $k = n - 1$.

In this case x is a sum of (a_1, \ldots, a_{n-1}) and y a sum of (a_n). So $y = a_n$ and by (**) applied with $x = u$ we have $z = x + y = x + a_n = \sum_{i=1}^{n} a_i$.

Case 2: $1 < k < n - 1$.

Observe that $n - k \leq n - 1 < n$ and so by the induction assumption $P(n-k)$ holds. Since y is a sum of a_{k+1}, \ldots, a_n we conclude that $y = \sum_{i=1}^{n-k} a_{k+i}$. Since $k < n - 1$, $1 < n - k$ and so by definition of Σ, $y = \sum_{i=1}^{n-k} a_{k+i} + a_n$. Since $+$ is associative we compute

$$z = x + y = x + \left(\sum_{i=1}^{n-k} a_{k+i} + a_n \right) = (x + \sum_{i=1}^{n-k-1} a_{k+i} + a_n) + a_n$$

Put $u = x + \sum_{i=1}^{n-k-1} a_{k+i}$. Then $z = u + a_n$. Also x is a sum of (a_1, \ldots, a_k) and $\sum_{i=1}^{n-k-1} a_{k+i}$ is a sum of (a_k, \ldots, a_{n-1}). So by definition of a sum, u is a sum of (a_1, \ldots, a_{n-1}). Thus by (**), $z = u + a_n = \sum_{i=1}^{n} a_i$.

We proved that in both cases $z = \sum_{i=1}^{n} a_i$. Thus $P(n)$ holds. By the principle of complete induction, $P(n)$ holds for all positive integers n. \qed

D.2 The general commutative law

Definition D.2.1. A binary operation $+$ on a set G is called commutative if $a + b = b + a$ for all $a, b \in G$.
Theorem D.2.2 (General Commutative Law I). Let $+$ be an associative and commutative binary operation on a set G. Let $a_1, a_2, \ldots, a_n \in G$ and $f : [1 \ldots n] \rightarrow [1 \ldots n]$ a bijection. Then

$$
\sum_{i=1}^{n} a_i = \sum_{i=1}^{n} a_{f(i)}
$$

Proof. Observe that the theorem clearly holds for $n = 1$. Suppose inductively its true for $n - 1$.

Since f is onto there exists a unique integer k with $f(k) = n$.

Define $g : \{1, \ldots, n - 1\} \rightarrow \{1, \ldots, n - 1\}$ by $g(i) = f(i)$ if $i < k$ and $g(i) = f(i + 1)$ if $i \geq k$. We claim that g is a bijection. For this let $1 \leq l \leq n - 1$ be an integer. Then $l = f(m)$ for some $1 \leq m \leq n$. Since $l \neq n$ and f is 1-1, $m \neq k$. If $m < k$, then $g(m) = f(m) = l$ and if $m > k$, then $g(m - 1) = f(m) = l$. Thus g is onto and by [G.1.7][3] g is also 1-1. By assumption the theorem is true for $n - 1$ and so

$$(*) \quad \sum_{i=1}^{n-1} a_i = \sum_{i=1}^{n-1} a_{g(i)}$$

Using the general associative law (GAL, Theorem D.1.3) we have

$$
\sum_{i=1}^{n} a_{f(i)} = (\sum_{i=1}^{k-1} a_{f(i)}) + (a_{f(k)} + \sum_{i=k+1}^{n} a_{f(i)})
$$

($n = f(k)$)

$$
(\cdot + \text{commutative}) = (\sum_{i=1}^{k-1} a_{f(i)}) + (a_{g(i)} + \sum_{i=k+1}^{n} a_{f(i)})
$$

(definition of g)

$$
\text{(GAL)} = (\sum_{i=1}^{k-1} a_{g(i)}) + (\sum_{j=k}^{n-1} a_{f(j+1)}) + a_n
$$

(definition of \sum)

$$
\text{(*)} = \sum_{i=1}^{n} a_{g(i)} + a_n
$$

So the Theorem holds for n and thus by the Principal of Mathematical induction for all positive integers.

Corollary D.2.3. Let $+$ be an associative and commutative binary operation on a set G. I a non-empty finite set and for $i \in I$ let $b_i \in G$. Let $g, h : \{1, \ldots, n\} \rightarrow I$ be bijections, then

$$
\sum_{i=1}^{n} b_{g(i)} = \sum_{i=1}^{n} b_{h(i)}
$$
Proof. For \(1 \leq i \leq n\), define \(a_i = b_{g(i)}\). Let \(f = g^{-1} \circ h\). Then \(f\) is a bijection. Moreover, \(g \circ f = h\) and \(a_{f(i)} = b_{g(f(i))} = b_{h(i)}\). Thus

\[
\sum_{i=1}^{n} b_{h(i)} = \sum_{i=1}^{n} a_{f(i)} = \sum_{i=1}^{n} a_i = \sum_{i=1}^{n} b_{g(i)}
\]

\(\Box\)

Definition D.2.4. Let + be an associative and commutative binary operation on a set \(G\). If \(I\) is a finite set and for \(i \in I\) let \(b_i \in G\). Then \(\sum_{i \in I} a_i := \sum_{i=1}^{n} b_{f(i)}\), where \(n = |I|\) and \(f := \{1, \ldots, n\}\) is bijection. (Observe here that by D.2.3 this does not depend on the choice of \(f\).)

Theorem D.2.5 (General Commutative Law II). Let + be an associative and commutative binary operation on a set \(G\). If \(I\) is a finite set, \((I_j, |j \in J|)\) a partition of \(I\) and for \(i \in I\) let \(a_i \in G\). Then

\[
\sum_{i \in I} a_i = \sum_{j \in J} \left(\sum_{i \in I_j} a_i \right)
\]

Proof. The proof is by induction on \(|J|\). If \(|J| = 1\), the result is clearly true. Suppose next that \(|J| = 2\) and say \(J = \{j_1, j_2\}\). Let \(f_i : \{1, \ldots, n_i\} \to I_{j_i}\) be a bijection and define \(f : \{1, \ldots, n_1 + n_2\} \to I\) by \(f(i) = f_1(i)\) if \(1 \leq i \leq n_1\) and \(f(i) = f_2(i - n_1)\) if \(n_1 + 1 \leq i \leq n_1 + n_2\). Then clearly \(f\) is a onto and so by G.1.7[b], \(f\) is 1-1. We compute

\[
\sum_{i \in I} a_i = \sum_{i=1}^{n_1+n_2} a_{f(i)} = (\sum_{i=1}^{n_1} a_{f_1(i)}) + (\sum_{i=n_1+1}^{n_1+n_2} a_{f_2(i)}) = (\sum_{i \in I_{j_1}} a_i) + (\sum_{i \in I_{j_2}} a_i) = \sum_{j \in J} \left(\sum_{i \in I_j} a_i \right)
\]

Thus the theorem holds if \(|J| = 2\). Suppose now that the theorem is true whenever \(|J| = k\). We need to show it is also true if \(|J| = k + 1\). Let \(j \in J\) and put \(Y = I \setminus J\). Then \(I_k | j \neq k \in J\) is a partition of \(Y\) and \((I_j, Y)\) is partition of \(I\). By the induction assumption, \(\sum_{i \in Y} a_i = \sum_{j \neq k \in J} \left(\sum_{i \in I_k} a_i \right)\) and so by the \(|J| = 2\)-case

\[
\sum_{i \in I} a_i = \left(\sum_{i \in I_j} a_i \right) + \left(\sum_{i \in Y} a_i \right) = \left(\sum_{i \in I_j} a_i \right) + \left(\sum_{j \neq k \in J} \left(\sum_{i \in I_k} a_i \right) \right) = \sum_{j \in J} \left(\sum_{i \in I_j} a_i \right)
\]

The theorem now follows from the Principal of Mathematical Induction. \(\Box\)
D.3 The General Distributive Law

Definition D.3.1. Let $(\cdot,+)$ be a pair of binary operation on the set G. We say that

(a) $(\cdot,+)$ is left-distributive if $a(b + c) = (ab) + (ac)$ for all $a,b,c \in G$.

(b) $(\cdot,+)$ is right-distributive if $(b+c)a = (ba) + (ca)$ for all $a,b,c \in G$.

(c) $(\cdot,+)$ is distributive if it is right- and left-distributive.

Theorem D.3.2 (General Distributive Law). Let $(\cdot,+)$ be a pair of binary operations on the set G.

(a) Suppose $(\cdot,+)$ is left-distributive and let $a,b_1,\ldots,b_m \in G$. Then

$$a \cdot (\sum_{j=1}^{m} b_j) = \sum_{j=1}^{m} ab_j$$

(b) Suppose $(\cdot,+)$ is right-distributive and let $a_1,\ldots,a_n,b \in G$. Then

$$\left(\sum_{i=1}^{m} a_i\right) \cdot b = \sum_{i=1}^{n} a_ib$$

(c) Suppose $(\cdot,+)$ is distributive and let $a_1,\ldots,a_n,b_1,\ldots,b_m \in G$. Then

$$\left(\sum_{i=1}^{n} a_i\right) \cdot \left(\sum_{j=1}^{m} b_j\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_ib_j\right)$$

Proof. (a) Clearly (a) is true for $m = 1$. Suppose now (a) is true for k and let $a,b_1,\ldots,b_{k+1} \in G$. Then

$$a \cdot \left(\sum_{i=1}^{k+1} b_i\right) = a \cdot \left(\sum_{i=1}^{k} b_i + b_{k+1}\right) = a \cdot \left(\sum_{i=1}^{k} b_i\right) + a \cdot b_{k+1}$$

Thus (a) holds for $k + 1$ and so by induction for all positive integers n.

The proof of (b) is virtually the same as the proof of (a) and we leave the details to the reader.

(c)

$$\left(\sum_{i=1}^{m} a_i\right) \cdot \left(\sum_{i=1}^{k} b_i\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_ib_j\right) = \sum_{i=1}^{n} \left(\sum_{j=1}^{m} a_ib\right)$$

□
Appendix E

Verifying Ring Axioms

Proposition E.0.3. Let \((R, +, \cdot)\) be ring and \((S, \oplus, \odot)\) a set with binary operations \(\oplus\) and \(\odot\). Suppose there exists an onto homomorphism \(\Phi : R \to S\) (that is an onto function \(\Phi : R \to S\) with \(\Phi(a + b) = \Phi(a) \oplus \Phi(b)\) and \(\Phi(ab) = \Phi(a) \odot \Phi(b)\) for all \(a, b \in R\)). Then

(a) \((S, \oplus, \odot)\) is a ring and \(\Phi\) is ring homomorphism.

(b) If \(R\) is commutative, so is \(S\).

Proof. Clearly if \(S\) is a ring, then \(\Phi\) is a ring homomorphism. So we only need to verify the eight ring axioms. For this let \(a, b, c \in S\). Since \(\Phi\) is onto ther exist \(x, y, z \in R\) with \(\Phi(x) = a, \Phi(y) = b\) and \(\Phi(z) = c\).

Ax 1 By assumption \(\oplus\) is binary operation. So Ax 1 holds for \(S\).

Ax 2

\[
a \oplus (b \oplus c) = \Phi(x) \oplus (\Phi(y) \oplus \Phi(z)) = \Phi(x) \oplus \Phi(y + z) = \Phi(x + (y + z)) = \Phi((x + y) + z) = \Phi(x + y) \oplus \Phi(z) = (\Phi(x) \oplus \Phi(y)) \oplus \Phi(z) = (a \oplus b) \oplus c
\]

Ax 3 \(a \oplus b = \Phi(x) \oplus \Phi(y) = \Phi(x + y) = \Phi(y + x) = \Phi(y) \oplus \Phi(x) = b \oplus a\)

Ax 4 Put \(0_S = \Phi(0_R)\). Then

\[
a \oplus 0_S = \Phi(x) \oplus \Phi(0_R) = \Phi(x + 0_R) = \Phi(x) = a
\]

\[
0_S + a = \Phi(0_R) \oplus \Phi(x) = \Phi(0_R + x) = \Phi(x) = a.
\]

Ax 5 Put \(d = \Phi(-x)\). Then

\[
a \oplus d = \Phi(x) \oplus \Phi(-x) = \Phi(x + (-x)) = \Phi(0_R) = 0_S
\]

Ax 6 By assumption \(\odot\) is binary operation. So Ax 6 holds for \(S\).

151
Ax 7

\[a \odot (b \odot c) = \Phi(x) \odot (\Phi(y) \odot \Phi(z)) = \Phi(x) \odot \Phi(yz) = \Phi(xyz) \]
\[= \Phi((xy)z) = \Phi(xy) \odot \Phi(z) = (\Phi(x) \odot \Phi(y)) \odot \Phi(z) = (a \odot b) \odot c \]

Ax 8

\[a \odot (b \oplus c) = \Phi(x) \odot (\Phi(y) \oplus \Phi(z)) = \Phi(x) \odot \Phi(y + z) = \Phi(x(y + z)) \]
\[= \Phi(xy + xz) = \Phi(xy) + \Phi(xz) = (\Phi(x) \odot \Phi(y)) + (\Phi(x) \odot \Phi(z)) = (a \odot b) \oplus (a \odot c) \]

Similarly \((a \oplus b) \odot c = (a \odot c) \oplus (b \odot c)\).

(b) Suppose \(R\) is commutative then

2.1.2 \[a \odot b = \Phi(x) \odot \Phi(y) = \Phi(xy) = \Phi(yx) = \Phi(y) \odot \Phi(x) = b \odot a \]
Appendix F

Constructing rings from given rings

F.1 Direct products of rings

Definition F.1.1. Let \((R_i)_{i \in I}\) be a family of rings (that is \(I\) is a set and for each \(i \in I\), \(R_i\) is a ring).

(a) \(\times_{i \in I} R_i\) is the set of all functions \(r : I \rightarrow \bigcup_{i \in I} R_i, i \rightarrow r_i\) such that \(r_i \in R_i\) for all \(i \in I\).

(b) \(\times_{i \in I} R_i\) is called the direct product of \((R_i)_{i \in I}\).

(c) We denote \(r \in \times_{i \in I} R_i\) by \((r_i)_{i \in I}\), \((r_i)\) or \((r_i)\).

(d) For \(r = (r_i)\) and \(s = (s_i)\) in \(R\) define \(r + s = (r_i + s_i)\) and \(rs = (r_is_i)\).

Lemma F.1.2. Let \((R_i)_{i \in I}\) be a family of rings.

(a) \(R := \times_{i \in I} R_i\) is a ring.

(b) \(0_R = (0_{R_i})_{i \in I}\).

(c) \(-r_i = (-r_i)\).

(d) If each \(R_i\) is a ring with identity, then also \(\times_{i \in I} R_i\) is a ring with identity and \(1_R = (1_{R_i})\).

(e) If each \(R_i\) is commutative, then \(\times_{i \in I} R_i\) is commutative.

Proof. Left as an exercise.

F.2 Matrix rings

Definition F.2.1. Let \(R\) be a ring and \(m, n\) positive integers.

(a) An \(m \times n\)-matrix with coefficients in \(R\) is a function

\[
A : \{1, \ldots, m\} \times \{1, \ldots, n\} \rightarrow R, \quad (i, j) \mapsto a_{ij}.
\]
(b) We denote an \(m \times n \)-matrix \(A \) by \([a_{ij}]_{1 \leq i \leq m, 1 \leq j \leq n} \), \([a_{ij}], [a_{ij}]\) or
\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix}
\]

(c) Let \(A = [a_{ij}] \) and \(B = [b_{ij}] \) be \(m \times n \) matrices with coefficients in \(R \). Then \(A + B \) is the \(m \times n \)-matrix \(A + B := [a_{ij} + b_{ij}] \).

(d) Let \(A = [a_{ij}]_{ij} \) be an \(m \times n \)-matrix and \(B = [b_{jk}]_{jk} \) an \(n \times p \) matrix with coefficients in \(R \). Then \(AB \) is the \(m \times p \) matrix \(AB = [\sum_{j=1}^{n} a_{ij}b_{jk}]_{ik} \).

(e) \(M_{mn}(R) \) denotes the set of all \(m \times n \) matrices with coefficients in \(R \). \(M_n(R) = M_{nn}(R) \).

It might be useful to write out the above definitions of \(A + B \) and \(AB \) in longhand notation:
\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix} + \begin{bmatrix}
b_{11} & b_{12} & \ldots & b_{1n} \\
b_{21} & b_{22} & \ldots & b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
b_{m1} & b_{m2} & \ldots & b_{mn}
\end{bmatrix} = \begin{bmatrix}
a_{11} + b_{11} & a_{12} + b_{12} & \ldots & a_{1n} + b_{1n} \\
a_{21} + b_{21} & a_{22} + b_{22} & \ldots & a_{2n} + b_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} + b_{m2} & a_{m2} + b_{mn} & \ldots & a_{mn} + b_{mn}
\end{bmatrix}
\]

and
\[
\begin{bmatrix}
a_{11} & a_{12} & \ldots & a_{1n} \\
a_{21} & a_{22} & \ldots & a_{2n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1} & a_{m2} & \ldots & a_{mn}
\end{bmatrix} \cdot \begin{bmatrix}
b_{11} & b_{12} & \ldots & b_{1p} \\
b_{21} & b_{22} & \ldots & b_{2p} \\
\vdots & \vdots & \ddots & \vdots \\
b_{n1} & b_{n2} & \ldots & b_{np}
\end{bmatrix} = \begin{bmatrix}
a_{11}b_{11} + a_{12}b_{21} + \ldots + a_{1n}b_{n1} & a_{11}b_{12} + a_{12}b_{22} + \ldots + a_{1n}b_{n2} & \ldots & a_{11}b_{1p} + a_{12}b_{2p} + \ldots + a_{1n}b_{np} \\
a_{21}b_{11} + a_{22}b_{21} + \ldots + a_{2n}b_{n1} & a_{21}b_{12} + a_{22}b_{22} + \ldots + a_{2n}b_{n2} & \ldots & a_{21}b_{1p} + a_{22}b_{2p} + \ldots + a_{2n}b_{np} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m1}b_{11} + a_{m2}b_{21} + \ldots + a_{mn}b_{n1} & a_{m1}b_{12} + a_{m2}b_{22} + \ldots + a_{mn}b_{n2} & \ldots & a_{m1}b_{1p} + a_{m2}b_{2p} + \ldots + a_{mn}b_{np}
\end{bmatrix}
\]
Lemma F.2.2. Let \(n \) be an integer and \(R \) an ring. Then

(a) \((M_n(R), +, \cdot) \) is a ring.

(b) \(0_{M_n(R)} = (0_R)_{ij} \).

(c) \(-[a_{ij}] = [-a_{ij}] \) for any \([a_{ij}] \in M_n(R)\).

(d) If \(R \) has an identity, then \(M_n(R) \) has an identity and \(1_{M_n(R)} = (\delta_{ij}) \), where

\[
\delta_{ij} = \begin{cases}
1_R & \text{if } i = j \\
0_R & \text{if } i \neq j
\end{cases}
\]

Proof. Put \(J = \{1, \ldots, n\} \times \{1, \ldots, m\} \) and observe that \((M_n(R), +) = (X_{j \in J} R, +) \). So F.1.2 implies that \(\text{Ax 1} \) \(\text{Ax 5} \) \(\text{Ax 6} \) \(\text{Ax 7} \) hold. Clearly \(\text{Ax 6} \) holds. To verify \(\text{Ax 7} \) let \(A = [a_{ij}] \), \(B = [b_{jk}] \) and \(C = [c_{kl}] \) be in \(M_n(R) \). Put \(D = AB \) and \(E = BC \). Then

\[
(AB)C = DC = \left[\sum_{k=1}^{n} d_{ik} c_{kl} \right]_{il} = \left[\sum_{k=1}^{n} \left(\sum_{j=1}^{n} a_{ij} b_{jk} \right) c_{kl} \right]_{il} = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} a_{ij} b_{jk} c_{kl} \right]_{il}
\]

and

\[
A(BC) = AE = \left[\sum_{j=1}^{n} a_{ij} e_{jl} \right]_{il} = \left[\sum_{j=1}^{n} a_{ij} \left(\sum_{k=1}^{n} b_{jk} c_{kl} \right) \right]_{il} = \left[\sum_{j=1}^{n} \sum_{k=1}^{n} a_{ij} b_{jk} c_{kl} \right]_{il}
\]

Thus \(A(BC) = (AB)C \).

\[
(A + B)C = [a_{ij} + b_{ij}]_{ij} \cdot [c_{jk}]_{ik} = \left[\sum_{j=1}^{n} (a_{ij} + b_{ij}) c_{jk} \right]_{ik}
\]

\[
= \left[\sum_{j=1}^{n} a_{ij} c_{jk} \right]_{ik} + \left[\sum_{j=1}^{n} b_{ij} c_{jk} \right]_{ik} = AC + BC.
\]

So \((A + B)C = AC + BC \) and similarly \(A(B + C) = AB + AC \). Thus \(M_n(R) \) is a ring.

Suppose now that \(R \) has an identity \(1_R \). Put \(I = [\delta_{ij}]_{ij} \), where

\[
\delta_{ij} = \begin{cases}
1_R & \text{if } i = j \\
0_R & \text{if } i \neq j
\end{cases}
\]

If \(i \neq j \), then \(\delta_{ij} a_{jk} = 0_R a_{jk} = 0_R \) and if \(i = j \) then \(\delta_{ij} a_{jk} = 1_R a_{ik} = a_{ik} \). Thus

\[
IA = \left[\sum_{j=1}^{n} \delta_{ij} a_{jk} \right]_{ik} = [a_{ik}]_{ik} = A
\]

and similarly \(AI = A \). Thus \(A \) is an identity in \(R \) and so \(\text{Ax 6} \) holds. \(\square \)
F.3 Polynomial Rings

In this section we show that if \(R \) is ring with identity then existence of a polynomial ring with coefficients in \(R \).

Theorem F.3.1. Let \(R \) be a ring. Let \(P \) be the set of all functions \(f : \mathbb{N} \rightarrow R \) such that there exists \(m \in \mathbb{N}^* \) with

\[
(1) \quad f(i) = 0_R \text{ for all } i > m
\]

We define an addition and multiplication on \(P \) by

\[
(2) \quad (f + g)(i) = f(i) + g(i) \quad \text{and} \quad (fg)(i) = \sum_{k=0}^{i} f(i)g(k - i)
\]

(a) \(P \) is a ring.

(b) For \(r \in R \) define \(r^o \in P \) by

\[
(3) \quad r^o(i) := \begin{cases}
 r & \text{if } i = 0 \\
 0_R & \text{if } i \neq 0
\end{cases}
\]

Then the map \(R \rightarrow P, r \mapsto r^o \) is a 1-1 homomorphism.

(c) Suppose \(R \) has an identity and define \(x \in P \) by

\[
x(i) := \begin{cases}
 1_R & \text{if } i = 1 \\
 0_R & \text{if } i \neq 1
\end{cases}
\]

Then (after identifying \(r \in R \) with \(r^o \) in \(P \)), \(P \) is a polynomial ring with coefficients in \(R \) and indeterminate \(x \).

Proof. Let \(f, g \in P \). Let \(\deg f \) be the minimal \(m \in \mathbb{N}^* \) for which \((1) \) holds. Observe that \((2) \) defines functions \(f + g \) and \(fg \) from \(\mathbb{N} \) to \(R \). So to show that \(f + g \) and \(fg \) are in \(P \) we need to verify that \((1) \) holds for \(f + g \) and \(fg \) as well. Let \(m = \max \deg f, \deg g \) and \(n = \deg f + \deg g \). Then for \(i > m \), \(f(i) = 0_R \) and \(g(i) = 0_R \) and so also \((f + g)(i) = 0_R \). Also if \(i > n \) and \(0 \leq k \leq i \), then either \(k < \deg f \) or \(i - k > \deg g \). In either case \(f(k)g(i - k) = 0_R \) and so \((fg)(i) = 0_R \). So we indeed have \(f + g \in P \) and \(fg \in P \). Thus axioms \(\text{Ax 1} \) and \(\text{Ax 6} \) hold. We now verify the remaining axioms one by one. Observe that \(f \) and \(g \) in \(P \) are equal if and only if \(f(i) = g(i) \) for all \(i \in \mathbb{N} \). Let \(f, g, h \in P \) and \(i \in \mathbb{N} \).
\[(f + g)(i) = f(i) + g(i) = (g(i) + f(i)) = (g + f)(i) \]

Ax 2

\[
((f + g) + h)(i) = (f + g)(i) + h(i) = ((f + g)(i) + h(i)) = f(i) + (g(i) + h(i)) = (f(i) + g(i) + h(i))
\]

\[
= f(i) + (g(i) + h(i)) = f(i) + (g + h)(i) = (f + (g + h))(i)
\]

Ax 3

\[
(f + g)(i) = f(i) + g(i) = g(i) + f(i) = (g + f)(i)
\]

Ax 4

Define \(0_p \in P\) by \(0_p(i) = 0_R\) for all \(i \in \mathbb{N}\). Then

\[
(f + 0_p)(i) = f(i) + 0_p(i) = f(i) + 0_R = f(i)
\]

\[
(0_p + f)(i) = 0_p(i) + f(i) = 0_R + f(i) = f(i)
\]

Ax 5

Define \(-f \in P\) by \((-f)(i) = -f(i)\) for all \(i \in \mathbb{N}\). Then

\[
(f + (-f))(i) = f(i) + (-f)(i) = f(i) + (-f(i)) = 0_R = 0_P(i)
\]

Ax 7

Any triple of non-negative integers \((k, l, p)\) with \(k + l + p = i\) be uniquely written as \((k, j - k, i - j)\) where \(0 \leq j \leq i\) and \(0 \leq k \leq j - k\) and uniquely as \((k, l, i - k - l)\) where \(0 \leq i \leq k\) and \(0 \leq l \leq i - k\). This is used in the fourth equality sign in the following computation:

\[
((fgh)(i) = \sum_{j=0}^{i} (fg)(j) \cdot h(i - j) = \sum_{j=0}^{i} \left(\sum_{k=0}^{i-j} f(k)g(j-k)h(i-j) \right) = \sum_{k=0}^{i} \left(\sum_{l=0}^{i-k} f(k)g(l)h(i-k-l) \right) = \sum_{k=0}^{i} f(k) \cdot (gh)(i-k) = (fgh)(i)
\]

Ax 8

\[
(f \cdot (g + h))(i) = \sum_{j=0}^{i} f(j) \cdot (g + h)(i - j) = \sum_{j=0}^{i} f(j) \cdot (g(i-j) + h(i-j)) = \sum_{j=0}^{i} f(j)g(i-j) + f(j)h(i-j) = (fg)(i) + (fh)(i) = (fg + fh)(i)
\]

\[
((f + g) \cdot h)(i) = \sum_{j=0}^{i} (f + g)(j) \cdot h(i - j) = \sum_{j=0}^{i} (f(j) + g(j)) \cdot h(i - j) = \sum_{j=0}^{i} f(j)h(i-j) + g(j)h(i-j) = (fh)(i) + (gh)(i) = (fh + gh)(i)
\]
Since [Ax 1] through [Ax 8] hold we conclude that \(P \) is a ring and (a) is proved. Let \(r, s \in R \) and \(k, l \in \mathbb{N} \). We compute

\[
(4) \quad (r + s)^\circ(i) = \begin{cases} r + s & \text{if } i = 0 \\ 0_R & \text{if } i \neq 0 \end{cases} = r^\circ(i) + s^\circ(i) = (r^\circ + s^\circ)(i)
\]

and

\[
(r^\circ s)(i) = \sum_{k=0}^{i} r^\circ(k)s(i - k)
\]

Note that \(r^\circ(k) = 0_R \) unless \(k = 0 \) and \(s^\circ(i-k) = 0_R \) unless \(i-k = 0 \). Hence \(r^\circ(k)s(i-k) = 0_R \) unless \(k = 0 \) and \(i-k = 0 \) (and so also \(i = 0 \)). Thus \((r^\circ s)(i) = 0 \) if \(i \neq 0 \) and \((r^\circ s)(0) = r^\circ(0)s^\circ(0) = rs \). This

\[
(5) \quad r^\circ s^\circ = (rs)^\circ
\]

Define \(\rho : R \to P, r \to r^\circ \). If \(r, s \in R \) with \(r^\circ = s^\circ \), then \(r = r^\circ(1) = s^\circ(1) = s \) and so \(\rho \) is 1-1. By (4) and (5), \(\rho \) is a homomorphism and so (b) is proved.

Assume from now on that \(R \) has an identity.

For \(k \in \mathbb{N} \) let \(\delta_k \in P \) be defined by

\[
\delta_k(i) := \begin{cases} 1_R & \text{if } i = k \\ 0_R & \text{if } i \neq k \end{cases}
\]

Let \(f \in P \). Then

\[
(7) \quad (r^\circ f)(i) = \sum_{k=0}^{i} r^\circ(k)f(i-k) = r \cdot f(i) + \sum_{i=1}^{k} 0_R f(i-k) = r \cdot f(i)
\]

and similarly

\[
(8) \quad (f r^\circ)(i) = f(i) \cdot r
\]

In particular, \(1^\circ_R \) is an identity in \(P \). Since \(\delta_0 = 1^\circ_R \) we conclude

\[
(9) \quad \delta_0 = 1^\circ_R = 1_P
\]

For \(f = \delta_k \) we conclude that
(10) \((r^o \delta_k)(i) = (\delta_k r^o)(i) = \begin{cases} r & \text{if } i = k \\ 0_R & \text{if } i \neq k \end{cases}\)

Let \(m \in \mathbb{N}\) and \(a_0, \ldots, a_m \in R\). Then (10) implies

(11) \(\left(\sum_{k=0}^{m} a_k^o \delta \right)(i) = \begin{cases} a_i & \text{if } i \leq m \\ 0_R & \text{if } i > m \end{cases}\)

We conclude that if \(f \in P\) and \(a_0, a_1, a_2, \ldots, a_m \in R\) then

(12) \(f = \sum_{k=0}^{m} a_k^o \delta_k \iff m \geq \deg f\) and \(a_k = f(k)\) for all \(0 \leq k \leq m\)

We compute

(13) \((\delta_k \delta_l)(i) = \sum_{j=0}^{i} \delta_k(j) \delta_l(i-j)\)

Since \(\delta_k(j) \delta_l(i-j)\) is \(0_R\) unless \(j = k\) and \(l = i-j\), that is unless \(j = k\) and \(i = l + k\), in which case it is \(1_R\), we conclude

(14) \((\delta_k \delta_l)(i) = \begin{cases} 1_R & \text{if } i = k + l \\ 0_R & \text{if } i \neq k + l \end{cases} = \delta_{k+l}(i)\)

and so

(15) \(\delta_k \delta_l = \delta_{k+l}\)

Note that \(x = \delta_1\). We conclude that

(16) \(x^k = \delta_k\)

By (10)

(17) \(r^o x = x r^o\) for all \(r \in R\)

We will now verify the four conditions (i)-(iv) in the definition of a polynomial. By (10) we can identify \(r\) with \(r^o\) in \(R\). Then \(R\) becomes a subring of \(P\). By (9), \(1^o_R = 1_P\). So (i) holds. By (17), (ii) holds. (iii) and (iv) follow from (12) and (16).
Lemma F.3.2. Let R and P be rings and $x \in P$. Suppose that Conditions (i)-(iv) in 3.1.1 hold under the convention that $f_0x^0 := f_0$ for all $f_0 \in R$. Then R and P have identities and $1_R = 1_P$.

Proof. Since $x \in P$, 3.1.1(iii) shows that $x = \sum_{i=0}^{m} e_i x^i$ for some $m \in \mathbb{N}$ and $e_0, e_1, \ldots e_n \in R$. Let $r \in R$. Then

$$rx = r \sum_{i=0}^{n} e_i x^i = \sum_{i=0}^{n} (re_i)x^i.$$

So 3.1.1(iv) shows that $re_1 = r$. Since $rx = xr$ by 3.1.1(ii), a similar argument gives $e_1r = e$ and so e_1 is an identity in R and $e_1 = 1_R$. Now let $f \in P$. Then $f = \sum_{i=0}^{n} f_i x^i$ for some $n \in \mathbb{N}$ and $f_0, \ldots, f_n \in R$. Thus

$$f \cdot 1_R = \left(\sum_{i=0}^{n} f_i x^i \right) \cdot 1_R = \sum_{i=0}^{n} (f_i 1_R)x^i = \sum_{i=0}^{n} f_i x^i = f$$

Similarly, $1_R \cdot f = f$ and so 1_R is an identity in P. \qed
Appendix G

Cardinalities

G.1 Cardinalities of Finite Sets

Notation G.1.1. For \(a, b \in \mathbb{Z} \) set \([a \ldots b] := \{ c \in \mathbb{Z} \mid a \leq c \leq b \}\).

Lemma G.1.2. Let \(A \subseteq [1 \ldots n] \). Then there exists a bijection \(\alpha : [1 \ldots n] \to [1 \ldots n] \) with \(\alpha(A) \subseteq [1 \ldots n-1] \).

Proof. Since \(A \neq [1 \ldots n] \) there exists \(m \in [1 \ldots n] \) with \(m \notin A \). Define \(\alpha(n) = m, \alpha(m) = n \) and \(\alpha(i) = i \) for all \(i \in [1 \ldots n] \) with \(n \neq i \neq m \). It is easy to verify that \(\alpha \) is bijection. Since \(\alpha(m) = n \) and \(m \notin A \), \(\alpha(a) \neq n \) for all \(a \in A \). So \(n \notin \alpha(A) \) and so \(\alpha(A) \subseteq [1 \ldots n-1] \).

Lemma G.1.3. Let \(n \in \mathbb{N} \) and let \(\beta : [1 \ldots n] \to [1 \ldots n] \) be a function. If \(\beta \) is 1-1, then \(\beta \) is onto.

Proof. The proof is by induction on \(n \). If \(n = 1 \), then \(\beta(1) = 1 \) and so \(\beta \) is onto. Let \(A = \beta([1 \ldots n-1]) \). Since \(\beta(n) \notin A \), \(A \neq [1 \ldots n] \). Thus by G.1.2 there exists a bijection \(\alpha : [1 \ldots n] \) with \(\alpha(A) \subseteq [1 \ldots n-1] \). Thus \(\alpha \beta([1 \ldots n-1]) \subseteq [1 \ldots n-1] \). By induction \(\alpha \beta([1 \ldots n-1]) = [1 \ldots n-1] \). Since \(\alpha \beta \) is 1-1 we conclude that \(\alpha \beta(n) = n \). Thus \(\alpha \beta \) is onto and \(\alpha \beta \) is a bijection. Since \(\alpha \) is also a bijection this implies that \(\beta \) is a bijection.

Definition G.1.4. A set \(A \) is finite if there exists \(n \in \mathbb{N} \) and a bijection \(\alpha : A \to [1 \ldots n] \).

Lemma G.1.5. Let \(A \) be a finite set. Then there exists a unique \(n \in \mathbb{N} \) for which there exists a bijection \(\alpha : A \to [1 \ldots n] \).

Proof. By definition of a finite set G.1.4 there exist \(n \in \mathbb{N} \) and a bijection \(\alpha : A \to [1 \ldots n] \). Suppose that also \(m \in \mathbb{N} \) and \(\beta : A \to [1 \ldots m] \) is a bijection. We need to show that \(n = m \) and may assume that \(n \leq m \). Let \(\gamma : [1 \ldots n] \to [1 \ldots m], i \to i \) and \(\delta := \gamma \circ \alpha \circ \beta^{-1} \). Then \(\gamma \) is a 1-1 function from \([1 \ldots m] \) to \([1 \ldots m] \) and so by G.1.3 \(\delta \) is onto. Thus also \(\gamma \) is onto. Since \(\gamma([1 \ldots n]) = [1 \ldots n] \) we conclude that \([1 \ldots n] = [1 \ldots m] \) and so also \(n = m \).

Definition G.1.6. Let \(A \) be a finite set. Then the unique \(n \in \mathbb{N} \) for which there exists a bijection \(\alpha : A \to [1 \ldots n] \) is called the cardinality or size of \(A \) and is denoted by \(|A| \).
Theorem G.1.7. Let A and B be finite sets.

(a) If $\alpha : A \to B$ is 1-1 then $|A| \leq |B|$, with equality if and only if α is onto.

(b) If $\alpha : A \to B$ is onto then $|A| \geq |B|$, with equality if and only if α is 1-1.

(c) If $A \subseteq B$ then $|A| \leq |B|$, with equality if and only if $|A| = |B|$.

Proof. (a) If α is onto then α is a bijection and so $|A| = |B|$. So it suffices to show that if $|A| \geq |B|$, then α is onto. Put $n = |A|$ and $m = |B|$ and let $\beta : A \to [1 \ldots n]$ and $\gamma : B \to [1 \ldots m]$ be bijection. Assume $n \geq m$ and let $\delta : [1 \ldots m] \to [1 \ldots n]$ be the inclusion map. Then $\delta \gamma \alpha^{-1}$ is a 1-1 function form $[1 \ldots n]$ to $[1 \ldots n]$ and so by G.1.3 its onto. Hence δ is onto, $n = m$ and δ is bijection. Since also γ is bijection, this forces α^{-1} to be onto and so also α is onto.

(b) Since α is onto there exists $\beta : B \to A$ with $\alpha \beta = \text{id}_B$. Then β is 1-1 and so by (a), $|B| \leq |A|$ and β is a bijection if and only if $|A| = |B|$. Since α is a bijection if and only if β is, (b) is proved.

(c) Follows from (a) applied to the inclusion map $A \to B$. \qed

Proposition G.1.8. Let A and be B be finite sets. Then

(a) If $A \cap B = \emptyset$, then $|A \cup B| = |A| + |B|$.

(b) $|A \times B| = |A| \cdot |B|$.

Proof. (a) Put $n = |A|$, $m = |B|$ and let $\beta : A \to [1 \ldots n]$ and $\gamma : B \to [1 \ldots m]$ be bijections. Define $\gamma : A \cup B \to [1 \ldots n + m]$ by

$$\gamma(c) = \begin{cases} \alpha(c) & \text{if } c \in A \\ \beta(c) + n & \text{if } c \in B \end{cases}$$

Then it is readily verified that γ is a bijection and so $|A \cup B| = n + m = |A| + |B|$.

(b) The proof is by induction on $|B|$. If $|B| = 0$, then $B = \emptyset$ and so also $A \times B = \emptyset$. If $|B| = 1$, then $B = \{b\}$ for some $b \in B$ and so the map $A \to A \times B$, $a \to (a, b)$ is a bijection. Thus $|A \times B| = |A| = |A| \cdot |B|$. Suppose now that (b) holds for any set B of size k. Let C be a set of size $k + 1$. Pick $c \in C$ and put $B = C \setminus \{c\}$. Then $C = B \cup \{c\}$ and so (a) implies $|B| = k$. So by induction $|A \times B| = |A| \cdot k$. Also $|A \times \{c\}| = |A|$ and so by (a)

$$|A \times C| = |A \times B| + |A \times \{c\}| = |A| \cdot k + |A| = |A| \cdot (k + 1) = |A||C|$$

(b) now follows from the principal of mathematical induction 1.4.2. \qed
Bibliography