Exercises.
Say which of the following is a field, an integral domain which is not a field, or a ring with identity which is not an integral domain:

- \(\mathbb{Z} \).
- \(\mathbb{Z}_6 \).
- \(\mathbb{Z}_5 \).
- \(\mathbb{R} \).
- \(\mathbb{Z} \otimes \mathbb{Z} \).
- \(\mathbb{R} \otimes \mathbb{R} \).
- \(\mathbb{R}[x] \).
- \(\mathbb{Z}_6[x] \).

Solution.

- \(\mathbb{Z} \) is an integral domain.
- \(\mathbb{Z}_6 \) is not an integral domain (it contains zero divisors).
- \(\mathbb{Z}_5 \) is a field.
- \(\mathbb{R} \) is a field.
• \(\mathbb{Z} \otimes \mathbb{Z} \) is not an integral domain.
• \(\mathbb{R} \otimes \mathbb{R} \) is not an integral domain.
• \(\mathbb{R}[x] \) is an integral domain (but not a field).
• \(\mathbb{Z}_6[x] \) is not an integral domain.

Polynomial rings.
We introduced the ring of polynomials \(R[x] \) in one variable over a ring \(R \). We shall see some of its properties. Recall that a polynomial is an expression of the form

\[
f(x) = c_0 + c_1 x + \cdots + c_n x^n
\]

where \(n \in \mathbb{N} \) and \(c_0, \ldots, c_n \in R \). Multiplication and addition follow from \(R \). Equality between polynomials means coefficient-wise equality. The degree of a nonzero polynomial \(f(x) \), denoted by \(\deg(f(x)) \) is the maximal power of \(x \) with nonzero coefficient in \(f(x) \). Note that the minimal possible degree is 0.

Examples.
The degree of \([1] + [4]x + [3]x^2 \) in \(\mathbb{Z}_6[x] \) is 2. The degree of \(\frac{1}{3} + x^6 - 3x^2 \) is 6 in \(\mathbb{Q}[x] \).

Question.
Given a ring (which is not an integral domain) \(R \), is it true that the degree of \(\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)) \)?

Answer.
No. Take for example \(R = \mathbb{Z}_6 \), \(f(x) = [3]x \) and \(g(x) = 1 + [2]x \). Then \(f(x)g(x) = [3]x + [0]x^2 = [3]x \). \(\deg(f(x)g(x)) = 1 \neq 2 = \deg(f(x)) + \deg(g(x)) \).

Exercise.
Show that if \(R \) is an integral domain and \(f(x), g(x) \in R[x]\setminus\{0\} \) then \(\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)) \).

Solution.
Let \(n = \deg(f(x)) \) and \(m = \deg(g(x)) \). Then \(f(x) = a_0 + \cdots + a_n x^n \) and \(g(x) = b_0 + \cdots + b_m x^m \) where \(a_n, b_m \neq 0 \). Now, \(h(x) = f(x)g(x) = a_0b_0 + (a_0b_1 + a_1b_0)x + \cdots + (a_{n-1}b_m + a_nb_{m-1})x^{n+m-1} + a_nb_{m}x^{m+n} \). In particular, the coefficient of \(x^{m+n} \) in \(h(x) \) is \(a_nb_m \). Since \(a_n, b_m \neq 0 \) and \(R \) is an integral domain, \(a_nb_m \) is nonzero. This is the term of highest degree in \(h(x) \), so \(m + n \) is the degree of \(h(x) \).

Remark.
Note that if \(R \) is not an integral domain, we still have the inequality

\[
\deg(fg) \leq \deg(f) + \deg(g).
\]
Exercise.
Prove that if R is an integral domain then $R[x]$ is an integral domain.

Proof.
Let $f(x), g(x) \in R[x] \setminus \{0\}$. Write $n = \deg(f(x))$ and $m = \deg(g(x))$, $f(x) = a_0 + \cdots + a_n x^n$ and $g(x) = b_0 + \cdots + b_m$ as in the previous exercise and $h(x) = f(x)g(x)$. Then the coefficient of x^{n+m} in $h(x)$ is nonzero, which means that $h(x)$ is not zero. Consequently there are no zero divisors in $R[x]$.

Question.
Given an integral domain (or even a field) R, can $R[x]$ be a field?

Answer.
No. The degree of 1 is 0. The degree of $f(x) = x$ is 1. For any $g(x) \in R[x]$, $\deg(f(x)g(x)) = \deg(f(x)) + \deg(g(x)) \geq \deg(f(x)) = 1 > 0$, which means that $f(x)g(x)$ is different from 1 for any $g(x)$. This means that $f(x)$ is not invertible, and as a result $R[x]$ is not a field.

Question.
Given an integral domain R, what are the units of $R[x]$?

Answer.
As we saw before, if the degree of $f(x)$ is nonzero then $f(x)$ is not a unit. Therefore all the units in $R[x]$ are degree 0 elements, which are elements in R. So the units in $R[x]$ are exactly R^\times (i.e. the units in R).

Question.
Given a ring R which is not an integral domain R, are the units of $R[x]$ necessarily R^\times?

Answer.
No. Take $R = \mathbb{Z}_4$. Then $([1] + [2])x \cdot ([1] + [2])x = [1] + [4]x + [4]x^2 = [1]$. So $[1] + [2]x$ is a unit of degree 1, and not in R^\times.

Exercise.

• Prove that in $\mathbb{Z}_n[x]$ we have $(x + [1])^n = x^n + [1]$ when n is prime.

• Take $S = x \cdot \mathbb{R}[x] = \{x \cdot f(x) : f(x) \in \mathbb{R}[x]\}$. Is that a subring of $\mathbb{R}[x]$? Describe the polynomials in S by their behavior when substituting $x = 0$.

• Let S be the set of polynomials in $\mathbb{Z}[x]$ where the free coefficient (the coefficient of $x^0 = 1$) is even. Is S a subring of $\mathbb{Z}[x]$? What about the set of polynomials with odd free coefficient?

• Take S to be the set of polynomials $f(x)$ in $\mathbb{R}[x]$ such that $f(1) = 0$. Is S a subring of $\mathbb{R}[x]$? What about the set of polynomials with $f(1) = 1$?