Relations.
A relation from A to B (or between A and B) is a subset R of $A \times B$. For convenience we often write aRb instead of $(a, b) \in R$. For a given relation R between A and B we define its domain to be A, and denote it by $\text{Dom}(R)$ and its image to be

$$\text{Im}(R) = \{ b \in B : \exists_{a \in A} aRb \}. $$

There is also the co-domain or “range” $\text{CoDom}(R) = B$ and the co-image

$$\text{CoIm}(R) = \{ a \in A : \exists_{b \in B} aRb \}. $$

Examples.
Take $A = B = \mathbb{R}$ and R to be the relation \leq, i.e. $R = \{(a, b) \in \mathbb{R}^2 : a \leq b \}$. This is why we write aRb, which in this case turns into $a \leq b$.

Take $A = \{1, 2, 3\}$, $B = \{a, b, c\}$ and $R = \{(1, a), (1, b), (2, b), (3, b)\}$. Since the number of elements involved is finite, we can describe the relation using the following diagram

```
1  →  a
   ↘
2  →  b
   ↗
3  ↘
c.
```

The image in this case is $\{a, b\}$ and the co-image is A.

Functions.
We call a relation \(R \) between \(A \) and \(B \) a “function” if for any \(a \in A \) there exists exactly one \(b \in B \) such that \(aRb \). In this case, we write \(b = R(a) \), and \(b \) is called the image of \(a \) under \(R \), \(a \) is a co-image of \(b \) and \(R \) maps \(a \) to \(b \). The expression \(R : A \to B \) means that \(R \) is a function from \(A \) to \(B \).

Examples. Take \(A = \{1, 2, 3\} \) and \(B = \{a, b, c\} \). Then

1 → a
2 → b
3 ↘ c

is not a function.

1 → a
2 → b
3 ↗ c

is a function.

1 → a
2 → b
3 ↘ c

is not a function.

If \(A = B = \mathbb{R} \), then \(f : \mathbb{R} \to \mathbb{R} \) which is defined by \(f(x) = x^2 \) is a function. Note that \(f(x) = \frac{1}{x} \) is not a function from \(\mathbb{R} \) to \(\mathbb{R} \) because it is not defined at 0. However, if one takes \(A \) to be \(\mathbb{R} \setminus \{0\} \) then \(f : A \to \mathbb{R} \) defined by \(f(x) = \frac{1}{x} \) is a function.

Types of functions.

Let \(f : A \to B \).

- We say that \(f \) is 1 − 1 (one to one) or “injective” (or an injection) if for any \(b \in B \) there exists at most one \(a \in A \) (a “unique” \(a \in A \)) for which \(f(a) = b \).
• We say that f is “onto” or “surjective” (or a surjection) if for any $b \in B$ there exists $a \in A$ such that $f(a) = b$.

• We say that f is “bijective” (or a bijection) if it is $1-1$ and onto.

Examples.

1 $\rightarrow a$

2 $\rightarrow b$

3 $\rightarrow c$

is neither $1-1$ nor onto.

1 $\rightarrow a$

2 $\rightarrow b$

3 $\rightarrow c$

is onto but not $1-1$.

1 $\rightarrow a$

2 $\rightarrow b$

is a bijection.

1 $\rightarrow a$

2 $\rightarrow b$

c

is $1-1$ but not onto.

Fact.

If A and B are finite sets and there exists a bijection $f : A \rightarrow B$ then A and B are
of the same size. If there exists an injection \(f : A \to B \) then \(|A| \leq |B|\) and if there exists a surjection \(f : A \to B \) then \(|A| \geq |B|\).

Theorem.

If \(A \) and \(B \) are finite sets of the same size then a function \(f : A \to B \) then the following are equivalent:

- \(f \) is 1-1.
- \(f \) is onto.
- \(f \) is bijective.

The theorem does not hold if \(A \) and \(B \) are infinite (in which case the word “size” requires clarification). For example, take \(A = B = \mathbb{N} \) and \(f : A \to B \) defined by \(f(x) = x + 1 \). It is injective but not surjective. If one defines \(f(0) = 0 \) and for every \(n > 0, f(n) = n - 1 \), then \(f \) is surjective but not injective.

Exercises.

- Say about the following functions \(f : \mathbb{R} \to \mathbb{R} \) if they are injective, surjective, bijective or nothing of that sort: \(f(x) = x^2, f(x) = x^3, f(x) = 4x, f(x) = 1, f(x) = x + 1 \).

- Now consider the functions \(f : \mathbb{N} \to \mathbb{N} \) with the same formulas as above and answer the same question.

- In the second question, say in all the cases the function is not surjective, what the image is.