Abstract Algebra I - Lecture 29

Adam Chapman

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Definition.
A left ideal that is also a right ideal is called a two-sided ideal. For a two-sided ideal I in R we write $I \triangleleft R$.

Remark.
In a commutative ring every left ideal is a two-sided ideal. In that case we simply say ideal.

Exercise.
Show that in $M_2(\mathbb{R})$ there is no nonzero proper left ideal that is also a right ideal.

Solution.
Let I be a nonzero two-sided ideal in $M_2(\mathbb{R})$. Take a nonzero matrix M in I. This means there is a nonzero entry $m_{i,j}$ in row i and column j for some i and j. Multiply M from the left by a matrix with 1 in row i and column i and zeros elsewhere. Then multiply from the right by a matrix with 1 in row j and column j and zeros elsewhere. Multiply by $\frac{1}{m_{i,j}} \text{Id}$. What we get is a matrix with 1 in line i and column j and zeros elsewhere. This matrix is in I.

Now, by multiplying from the left and from the right by matrices inducing elementary row and column operations, we can move 1 anywhere we want. In particular, we can place it on the diagonal. We can also add up such matrices, and we remain in I, which means that we obtain that the identity matrix is in I, and so I is not proper.

Example.
If $I \triangleleft R$ and $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in I$ with $b \neq 0$ then $\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} A \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} \in I$.

Then $\begin{pmatrix} \frac{1}{b} & 0 \\ 0 & \frac{1}{b} \end{pmatrix} \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \in I$.

Email address: adam1chapman@yahoo.com (Adam Chapman)
Then \(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} \in I \) and \(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \in I \).

So \(\begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \in I \), which means \(I = R \).

Fact.
For any field \(F \) and any integer \(n \), \(M_n(F) \) contains no nonzero proper two-sided ideals.

Exercise.
Find a two-sided ideal in \(R = M_2(\mathbb{Z}) \).

Solution.
Take \(I = M_2(2\mathbb{Z}) \). This is the set of all the matrices with even entries. If \(A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \) is in \(R \) and \(B = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \) is in \(I \) then \(\begin{pmatrix} ae + bg & af + bh \\ ce + dg & cf + dh \end{pmatrix} \) is a matrix with even entries and hence in \(I \). Similarly \(BA \) is a matrix with even entries and hence in \(I \).

Home exercise.
Say in each of the following cases if the two-sided ideal \(I \triangleleft M_2(\mathbb{Z}) \) can be proper. If so, give an example, and if not, explain why:

- \(\begin{pmatrix} 2 & 5 \\ 1 & 3 \end{pmatrix} \in I. \)
- \(\begin{pmatrix} 3 & 6 \\ 0 & 3 \end{pmatrix} \in I. \)
- \(\begin{pmatrix} 2 & 5 \\ 3 & 8 \end{pmatrix} \in I. \)