Prime Factorization.

Given the properties of the irreducible (“prime”) polynomials in \(F[x] \), given any polynomial \(f(x) \), one can factorize it uniquely as \(c p_1(x)^{d_1} \cdots p_k(x)^{d_k} \) where \(c \in F^\times \) and \(p_1(x), \ldots, p_k(x) \) are monic irreducible polynomials.

Computing the \(\gcd \) and \(\text{lcm} \).

Given two polynomials, \(f(x) \) and \(g(x) \), one can factorize both: \(f(x) = c_f p_1(x)^{e_1} \cdots p_k(x)^{e_k} \) and \(g(x) = c_g p_1(x)^{e_1} \cdots p_k(x)^{e_k} \). Then \(\gcd(f(x), g(x)) = p_1(x)^{\min(e_1,d_1)} \cdots p_k(x)^{\min(e_k,d_k)} \) and \(\text{lcm}(f(x), g(x)) = p_1(x)^{\max(e_1,d_1)} \cdots p_k(x)^{\max(e_k,d_k)} \). In particular, \(f(x) g(x) = c_f c_g \gcd(f(x), g(x)) \text{lcm}(f(x), g(x)) \).

Example.

Let \(f(x) = (x^2+1)(x-3)^2(x+5)^7 \) and \(g(x) = (x-4)^2(x^2+1)^2 \). Then \(\gcd(f(x), g(x)) = (x^2 + 1) \) and \(\text{lcm}(f(x), g(x)) = (x^2 + 1)^3(x-3)^2(x+5)^7(x-4)^2 \).

Theorem.

The ring \(F[x] / f(x) \) is a field if and only if \(f(x) \) is irreducible.

Proof.

If \(f(x) \) is irreducible then every nonzero class in \(F[x] / f(x) \) has a representative \(h(x) \) with \(\gcd(f(x), h(x)) = 1 \). Then \(h(x) \) is invertible in \(F[x] / f(x) \). Therefore \(F[x] / f(x) \) is a field.

Assume \(f(x) = g(x) h(x) \) where \(g(x) \) and \(h(x) \) are not scalars (i.e. are of degree at least 1). Then the classes of \(g(x) \) and \(h(x) \) are zero divisors in \(F[x] / f(x) \), and \(F[x] / f(x) \) is not a field.

Proposition.

Let \(f(x) \in F[x] \) and assume \(f(a) = 0 \) for some \(a \in F \). Prove that \((x - a)[f(x)] \).

Proof.

Divide \(f(x) \) by \(x - a \) with remainder: \(f(x) = q(x)(x - a) + r(x) \). Assume \(r(x) \neq 0 \) Then \(\deg(r) < \deg(x - a) \), \(\deg(r) = 0 \), so \(r(x) \) is a scalar \(c \in F \setminus \{0\} \). Now

Email address: adam1chapman@yahoo.com (Adam Chapman)
\[f(a) = 0 = q(a)(a - a) + c = q(a) \cdot 0 + c = 0 + c = c, \text{ so } c = 0, \text{ contradiction.} \]

Therefore \(r(x) = 0 \) and \(f(x) = q(x)(x - a) \).

Terminology.

We call a polynomial \(f(x) \) of degree \(\geq 1 \) “reducible” if it is not irreducible, i.e. if \(f(x) = g(x)h(x) \) for some polynomials \(g(x) \) and \(h(x) \) of degree \(\geq 1 \).

Proposition.

Prove that if \(f(x) \) is of degree 2 or 3 then \(f(x) \) is reducible if and only if \(f(a) = 0 \) for some \(a \in F \).

Proof.

If \(f(a) = 0 \) then \(f(x) = q(x)(x-a) \) where \(\deg(q) = \deg(f) - 1 \), so \(f(x) \) is reducible.

Assume \(f(x) \) is reducible. Then \(f(x) = g(x)h(x) \) where \(\deg(g), \deg(h) \geq 1 \). If \(\deg(f) = 2 \) then \(\deg(g) = \deg(h) = 1 \). If \(\deg(f) = 3 \) then without loss of generality \(\deg(g) = 1 \) and \(\deg(h) = 2 \). Therefore \(g(x) = bx + c \) for some \(b \in F \setminus \{0\} \) and \(c \in F \). Take \(a = -\frac{c}{b} \). Then \(f(a) = g(a)h(a) = 0 \cdot h(a) = 0 \).

Remark.

There may be polynomials of degree \(\geq 4 \) which are reducible but have no roots. For example, \((x^2 + 1)^2 \in \mathbb{R}[x]\).

Exercise. Say in the following cases whether \(h(x) \) is invertible in \(\mathbb{R}[x]/f(x) \) and if so then find the inverse:

- \(h(x) = x^3 - 6x^2 + 11x - 6 \) and \(f(x) = x^3 - x \).
- \(h(x) = x^3 - 3x^2 - 4x + 12 \) and \(f(x) = x^3 - x \).

Say whether the following polynomials are irreducible:

- \(x^2 + x + 1 \) in \(\mathbb{Z}_2[x] \).
- \(x^2 + x + 1 \) in \(\mathbb{Z}_3[x] \).
- \(x^2 + x + 1 \) in \(\mathbb{Q}[x] \).
- \(x^2 + x + 1 \) in \(\mathbb{R}[x] \).
- \(x^2 + x + 1 \) in \(\mathbb{C}[x] \).