Abstract Algebra I - Lecture 23

Adam Chapman

Department of Mathematics, Michigan State University, East Lansing, MI 48824

Note on divisibility of polynomials.
If \(f(x) | g(x) \) and \(g(x) | f(x) \) then \(f(x) = c \cdot g(x) \) for some scalar \(c \in F^\times = F \setminus \{0\} \).

Proof.
From \(f(x) | g(x) \) we obtain \(\deg(f) \leq \deg(g) \) and from \(g(x) | f(x) \) we obtain \(\deg(g) \leq \deg(f) \), so \(\deg(g) = \deg(f) \). Now, divide \(f(x) \) by \(g(x) \): \(f(x) = q(x)g(x) \). The degree of \(q(x) \) must be 0, so \(q(x) \) is a scalar \(c \in F^\times \).

Congruence classes of polynomials.
Let \(F \) be a field. Consider the ring of polynomials \(F[x] \). Given a polynomial \(f(x) \), we can consider the equivalence relation \(g(x) \equiv h(x) \pmod{f(x)} \iff f(x)|(g(x) - h(x)) \). The set of congruence classes is denoted by \(F[x]/f(x) \).

Example.
Take \(F = \mathbb{R} \) and \(f(x) = x \). Two polynomials \(g(x) = a_0 + a_1x + \ldots \) and \(h(x) = b_0 + b_1x + \ldots \) are congruent modulo \(f(x) \) if and only if \(a_0 = b_0 \). Therefore the classes in \(\mathbb{R}[x]/x \) are parameterized by the free coefficients: \(\mathbb{R}[x]/x = \{[a_0] : a_0 \in \mathbb{R}\} \).

Ring structure.
\(F[x]/f(x) \) has a ring structure with addition and multiplication defined in the usual sense:

\[
[g(x)] + [h(x)] = [g(x) + h(x)]
\]

\[
[g(x)] \cdot [h(x)] = [g(x)h(x)]
\]

Example.
In \(\mathbb{Z}_2[x]/(x^2 + x + 1) \) we have: \([x^2] \cdot [x + 1] = [x^3 + x^2] = [x(x + 1) + x^2] = [x] \).

Terminology.
When talking about polynomials in \(F[x] \), a scalar means an element in \(F \setminus \{0\} \). This set is exactly the set of polynomials of degree 0, and also the set of units in \(F \), and also the set of units in \(F[x] \).

Email address: adam1chapman@yahoo.com (Adam Chapman)

Preprint submitted to Elsevier October 28, 2015
Irreducible Polynomials.
A polynomial $f(x) \in F[x]$ of degree ≥ 1 is irreducible if for any $f(x) = g(x)h(x)$, either $g(x)$ is a scalar or $h(x)$ is a scalar.

Examples.

- A polynomial of degree 1 is always irreducible.
- Every irreducible polynomial in $\mathbb{C}[x]$ is of degree 1.
- A polynomial in $\mathbb{R}[x]$ is irreducible if and only if it is either of degree 1 or if it is of degree $2 - ax^2 + bx + c$ and $b^2 - 4ac < 0$.

Remark.
The only divisors of an irreducible polynomial are scalar multiples of itself and scalars. Therefore, if $f(x) = c_kx^k + \cdots + c_0$ is irreducible then $\gcd(f(x), h(x))$ can be either $\frac{1}{c_k}f(x)$ or 1.

Definition.
Two polynomials $f(x), g(x)$ are relatively prime if $\gcd(f(x), g(x)) = 1$.

Proposition.
$f(x)$ is invertible in $F[x]/g(x)$ if and only if $\gcd(f(x), g(x)) = 1$.

Proof.
$\gcd(f(x), g(x)) = 1 \iff \varphi(x)f(x) + \psi(x)g(x) = 1$ for some $\varphi(x), \psi(x) \in F[x] \iff \varphi f(x) \equiv 1 \pmod{g(x)}$ for some $\varphi(x) \in F[x] \iff f(x)$ is invertible in $F[x]/g(x)$.

Proposition.
A polynomial $f(x) \in F[x]$ is irreducible if and only if whenever $f(x)|g(x)h(x)$, either $f(x)|g(x)$ or $f(x)|h(x)$.

Proof.

\Rightarrow
Assume $f(x)$ is irreducible. Assume $g(x)$ and $h(x)$ are not multiples of $f(x)$. Then they are prime to $f(x)$. Therefore $g(x)$ and $h(x)$ are invertible in $F[x]/f(x)$. Hence $g(x)h(x)$ is invertible in $F[x]/f(x)$. Consequently $g(x)h(x)$ is prime to $f(x)$ and so not a multiple of $f(x)$.

\Leftarrow
Assume that for any $g(x)$ and $h(x)$, if $f(x)|g(x)h(x)$ then either $f(x)|g(x)$ or $f(x)|h(x)$. Assume that $f(x) = \varphi(x)\psi(x)$. Then $f(x)|\varphi(x)$ or $f(x)|\psi(x)$. If $f(x)|\varphi(x)$ then
\[\varphi(x) = c \cdot f(x) \] and since \(f(x) = \varphi(x)\psi(x) \), \(\psi(x) \) must be a scalar. Similarly, if \(f(x)|\psi(x) \) then \(\varphi(x) \) must be a scalar. Therefore \(f(x) \) is irreducible.

Notes on the general case of integral domains.

In general, in an integral domain \(R \), a noninvertible element \(f \) is irreducible if whenever \(f = gh \), either \(g \) is invertible or \(h \) is invertible. In case of polynomials over fields, \(g \) is invertible if and only if it is of degree 0. This way this definition boils down to the definition above of irreducible elements in \(F[x] \).

In integral domains it is not true in general that \(f \) is irreducible if and only if whenever \(f|gh \) either \(f|g \) or \(f|h \). For example, in the integral domain \(\mathbb{Z}[\sqrt{-6}] \) (i.e. the set of all numbers that can be obtained by addition and multiplication of integers and the square root of \(-6\)) we have \((2 + \sqrt{-6}) \cdot (2 - \sqrt{-6}) = 10\), so \(2|(2 + \sqrt{-6}) \cdot (2 - \sqrt{-6})\) even though neither \(2 + \sqrt{-6}\) is a multiple of \(2\) nor \(2 - \sqrt{-6}\).

Exercise.

Say if \(f(x) \) is irreducible in \(\mathbb{R}[x] \) in the following cases:

- \(f(x) = x^2 + 1 \).
- \(f(x) = x^2 - 1 \).
- \(f(x) = x - 15 \).
- \(f(x) = x^{123} - 3x^{77} + 6 \).