Exercise.
Show that if $f : R \to S$ and $g : S \to T$ are homomorphisms then $g \circ f : R \to T$ is a homomorphism.

Proof.
Let $a, b \in R$. Then $f(a + b) = f(a) + f(b)$. Now $g \circ f(a + b) = g(f(a) + f(b)) = g(f(a)) + g(f(b)) = g \circ f(a) + g \circ f(b)$. In a similar manner, one can show that $g \circ f(ab) = (g \circ f(a))(g \circ f(b))$.

Remark.
Since the composition of bijections is a bijections, from the last exercise we conclude that the composition of isomorphisms is an isomorphism.

Proposition.
If $f : R \to S$ is an isomorphism then also the inverse function $f^{-1} : S \to R$ is an isomorphism.

Proof.
The inverse function is obviously also bijective. What is left to show is that it satisfies $f^{-1}(a + b) = f^{-1}(a) + f^{-1}(b)$ and $f^{-1}(ab) = f^{-1}(a)f^{-1}(b)$. Write $f^{-1}(a) = a'$ and $f^{-1}(b) = b'$. Since f is a homomorphism, $f(a' + b') = f(a') + f(b') = a + b$. Take $f^{-1}(\ldots)$ of both sides: $a' + b' = f^{-1}(a + b)$, and $a' = f^{-1}(a)$ and $b' = f^{-1}(b)$, so $f^{-1}(a + b) = f^{-1}(a) + f^{-1}(b)$. In a similar way one can show that $f^{-1}(ab) = f^{-1}(a)f^{-1}(b)$.

Definition.
We say that R is isomorphic to S and write $R \cong S$ if there exists an isomorphism $f : R \to S$. By the previous proposition, this relation is symmetric. The identity map on R is an isomorphism, so this relation is reflexive. By the remark above, the relation is also transitive. Therefore \cong is an equivalence relation for rings.

Exercise.
Prove that if \(f : R \to S \) is an epimorphism and \(R \) is commutative then \(S \) is commutative.

Proof.
Let \(a, b \in S \). Then there exist \(c, d \in R \) such that \(f(c) = a \) and \(f(d) = b \). Then
\[
ab = f(c)f(d) = f(cd) = f(dc) = f(d)f(c) = ba.
\]

Question.
Let \(R \) and \(S \) be two rings with identity. Let \(f : R \to S \) be an epimorphism. Is it true that if \(S \) contains zero divisors then \(R \) contains zero divisors as well? Is it true that if \(R \) contains zero divisors then \(S \) contains zero divisors?

Answer.
No and no. Take \(f : \mathbb{Z} \to \mathbb{Z}_6, f(n) = [n]_6, \) and \(g : \mathbb{Z}_6 \to \mathbb{Z}_3, g([n]_6) = [n]_3. \) The rings \(\mathbb{Z} \) and \(\mathbb{Z}_3 \) do not contain zero divisors, but \(\mathbb{Z}_6 \) does, even though both \(f \) and \(g \) are epimorphisms.

Exercise.
Let \(f : R \to S \) be an isomorphism. Prove that \(R \) contains zero divisors if and only if \(S \) contains zero divisors.

Proof.
Assume \(R \) contains zero divisors \(ab = 0, a \neq 0 \) and \(b \neq 0. \) Since \(a \neq 0 \) and \(f \)
is injective, \(f(a) \neq 0. \) Similarly, \(f(b) \neq 0. \) Now \(f(a)f(b) = f(ab) = f(0) = 0, \) so \(f(a) \) and \(f(b) \) are zero divisors. Since \(f \) is an isomorphism, \(f^{-1} \) is also an isomorphism, and we can repeat the argument for \(f^{-1} \) to show that if \(S \) contains zero divisors then \(R \) contains zero divisors.

Remark.
In a similar way one can show that if \(f : R \to S \) is a monomorphism and \(R \)
contains zero divisors then \(S \) contains zero divisors.

Exercise.
Let \(f : R \to S \) be an epimorphism of rings with identity and \(r \in R^\times. \) Show that \(f(r) \in S^\times. \)

Proof.
There is an inverse \(r^{-1} \) of \(r \) in \(R. \) Since \(f \) is an epimorphism of rings with identity,
\(f(1) = 1. \) Now \(1 = f(1) = f(r \cdot r^{-1}) = f(r) \cdot f(r^{-1}), \) and similarly \(1 = f(r^{-1}) \cdot f(r), \)
so \(f(r)^{-1} = f(r^{-1}). \)

Exercise.
Let \(f : R \to S \) be a homomorphism. Show that \(\text{Im}(f) \) is a subring of \(S. \)