Remark.
Let m and n be positive integers. By definition, $\text{lcm}(m, n)$ is the smallest positive integer k such that $m|k$ and $n|k$, i.e. it is the smallest integer of the form $m + m + \cdots + m$ which is also a multiple of n. Therefore, the number of times one needs to add $[m]$ to itself in order to get $[0]$ in \mathbb{Z}_n is $\frac{\text{lcm}(m, n)}{m}$, which is also equal to $\frac{n}{\gcd(m, n)}$ because $mn = \gcd(m, n) \text{lcm}(m, n)$.

Definition.
The additive order of an element r in a ring R is the minimal positive integer k such that $r + \cdots + r$ k-times is equal to 0. If R has an identity then the multiplicative order of a unit r is the minimal positive integer k such that $r^k = 1$. If such k does not exist, we say the order is ∞.

Exercise.
What is the additive order of $[22]$ in \mathbb{Z}_{55}?
Solution.
$\gcd(22, 55) = 11$, so the additive order of $[22]$ is $\frac{55}{11} = 5$.

Exercise.
What is the multiplicative order of $[2]$ in \mathbb{Z}_5?
Solution.

Exercise.
Let n be a positive integer and let $[m] \in \mathbb{Z}_n^\times$. Prove that the multiplicative order of $[m]$ divides $\varphi(n)$.
Solution.
Let k be the order of $[m]$. Divide $\varphi(n)$ by k with remainder: $\varphi(n) = qk + r$. Then $[m]^{\varphi(n)} = [1]$, but also $[m]^{\varphi(n)} = [m]^{qk+r} = ([m]^k)^q \cdot [m]^r = [m]^r$. If $r \neq 0$, it contradicts the minimality of k, so r must be 0.
Exercise.
Prove that if R is an integral domain then the additive order of 1, if finite, must be prime.

Solution.
Assume that the order k of 1 is not prime. Then $k = ab$ for some integers $k - 1 \geq a, b \geq 2$. Let $r = 1 + \cdots + 1$ a-times and $s = 1 + \cdots + 1$ b-times. Because of the minimality of k, $r, s \neq 0$. However, $rs = 1 + \cdots + 1$ k-times, so $rs = 0$, which means that r and s are zero divisors, contradictory to the assumption that R is a field.

Definition.
The additive order of 1 in an integral domain R is called the characteristic of R, and denoted $\text{char}(R)$. If it is ∞, then in many texts they prefer to define the characteristic to be 0. We shall use 0 as well.

Examples.

- For prime p, \mathbb{Z}_p is a field and $\text{char}(\mathbb{Z}_p) = p$.
- By definition, \mathbb{Z}_0 is isomorphic to \mathbb{Z}, and $\text{char}(\mathbb{Z}) = \infty$. This gives motivation for defining the characteristic to be 0 instead of ∞.
- $\text{char}(\mathbb{Q}) = \text{char}(\mathbb{R}) = \text{char}(\mathbb{C}) = 0$.

Exercise.
Let R be a field of characteristic 2 of size 4, i.e. $R = \{0, 1, a, b\}$. Find the addition table and multiplication table of R.