Review for midterm exam 1.

Exercise.

• Find $\gcd(11, 30)$ using Euclid’s algorithm.
• Express $\gcd(11, 30)$ as $11m + 30n$ for some integers m, n.
• Find $[30]^{-1}$ in \mathbb{Z}_{11}.

Solution.

\[
\begin{align*}
30 &= 2 \cdot 11 + 8 \\
11 &= 8 + 3 \\
8 &= 2 \cdot 3 + 2 \\
3 &= 2 + 1 \\
1 &= 2 - 1
\end{align*}
\]

so $\gcd(11, 30) = 1$.

Now

\[
\begin{align*}
3 &= 11 - 8 = 11 - (30 - 2 \cdot 11) = 3 \cdot 11 - 30 \\
2 &= 8 - 2 \cdot 3 = 30 - 2 \cdot 11 - 2 \cdot (3 \cdot 11 - 30) = 3 \cdot 30 - 8 \cdot 11
\end{align*}
\]
1 = 3 − 2 = 3 \cdot 11 − 30 − (3 \cdot 30 − 8 \cdot 11) = 11 \cdot 11 − 4 \cdot 30

so \(m = 11 \) and \(n = −4 \).

Therefore \([11]^{-1} = [11]\) in \(\mathbb{Z}_{30} \) and \([30]^{-1} = [−4]\) in \(\mathbb{Z}_{11} \).

Exercise.
Find \(\gcd(22, 33) \) and \(\text{lcm}(22, 33) \). Is \([22]\) invertible in \(\mathbb{Z}_{33} \)?

Solution.
The prime factorization of 22 is 22 = 11 \cdot 2 and of 33 is 33 = 11 \cdot 3. Therefore \(\gcd(22, 33) = 11 \) and \(\text{lcm}(22, 33) = 11 \cdot 2 \cdot 3 = 66 \).

[22] is not invertible in \(\mathbb{Z}_{33} \) because \(\gcd(22, 33) \neq 1 \).

Exercise.
Consider the set \(R = \{ x \in \mathbb{R} : x \geq 1 \} \) and the binary operators \(+ \) and \(\otimes \), where \(+ \) is the usual addition and \(\otimes \) is defined by \(a \otimes b = \max(a, b)^{\min(a, b)} \). For each of the following statements say if it holds:

- \(a \otimes b = b \otimes a \) for any \(a, b \in R \).
- \((a \otimes b) \otimes c = a \otimes (b \otimes c) \) for any \(a, b, c \in R \).
- There exists \(e \in R \) such that \(a \otimes e = e \otimes a = a \).
- \((a + b) \otimes c = (a \otimes c) + (b \otimes c) \)

Solution. Since \(\min(a, b) = \min(b, a) \) and \(\max(a, b) = \max(b, a) \), we have \(a \otimes b = b \otimes a \).

The second statement does not hold. Take \(a = b = 2 \) and \(c = 3 \). Then \((a \otimes b) \otimes c = 2^2 \otimes 3 = 4 \otimes 3 = 4^3 = 64 \) whereas \(a \otimes (b \otimes c) = 2 \otimes 3^2 = 2 \otimes 9 = 9^2 = 81 \).

The third statement is true. Take \(e = 1 \). By the definition of \(R \), every \(a \in R \) satisfies \(a \geq 1 \), so \(\max(a, 1) = a \) and \(\min(a, 1) = 1 \), which means \(a \otimes 1 = a^1 = a \).

The fourth statement does not hold. Take \(a = b = 1 \) and \(c = 3 \). Then \((a + b) \otimes c = 2 \otimes 3 = 3^2 = 9 \) whereas \((a \otimes c) + (b \otimes c) = 3^1 + 3^1 = 6 \).