Supplemental Material for Section 11.2: Convergence of an Infinite Series

The notion of a convergent infinite series is central to the rest of the material in Chapter 8. The idea is given a sequence of numbers \(a_0, a_1, a_2, a_3 \ldots \) investigate the sum of these numbers; that is, \(a_0 + a_1 + a_2 + a_3 + \ldots \). What should be clear is that if such a sum exists, then it can be approximated by \(a_0 + a_1 + \cdots + a_k = \sum_{n=0}^{k} a_n \). For each positive integer \(k \). So as \(k \) increases, the approximation gets better and better. The formal definition makes all of this precise using the notion of limit of a sequence.

Definition. Let \(\{a_n\} \) be a sequence (of terms). Then \(\sum a_n \) converges means that the sequence \(\{\sum_{n=0}^{k} a_n\} \) has a limit that is a number. Otherwise we say that \(\sum a_n \) diverges.

The sequence \(\{s_k\} \) defined by \(s_k = \sum_{n=0}^{k} a_n \) is called the sequence of partial sums of the infinite series \(\sum a_n \). So said another way \(\sum a_n \) converges means the sequence \(\{s_k\} \) has a numerical limit. If \(\sum a_n \) converges, then we let \(\sum_{n=0}^{\infty} a_n = \lim_{k \to \infty} \sum_{n=0}^{k} a_n \).

To better understand the meaning of “\(\sum a_n \) converges”, let \(\{a_n\} \) be a sequence of terms. Define a function \(f \) on the infinite interval \([0, \infty)\) by \(f(x) = a_n \) for \(x \) in the interval \([n, n + 1)\) for each positive integer \(n \). The graph of \(f \) is given in Figure 1.

![Figure 1: Graph of \(y = f(x) \)](image-url)
For any positive integer k, $s_k = \sum_{n=0}^{k} a_n = \int_{0}^{k} f(x) \, dx$. Thus $\sum a_n$ converges; that is, $\lim_{k \to \infty} s_k$ exists and is a nimber is equivalent to $\int_{0}^{\infty} f(x) \, dx$ converges. When each $a_n \geq 0$, $\sum a_n$ converges means that the area under the graph of $y = f(x)$ is finite.